MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwmhm Structured version   Visualization version   GIF version

Theorem gsumwmhm 17205
Description: Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Hypothesis
Ref Expression
gsumwmhm.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
gsumwmhm ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → (𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)))

Proof of Theorem gsumwmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . . . 5 (𝑊 = ∅ → (𝑀 Σg 𝑊) = (𝑀 Σg ∅))
2 eqid 2610 . . . . . 6 (0g𝑀) = (0g𝑀)
32gsum0 17101 . . . . 5 (𝑀 Σg ∅) = (0g𝑀)
41, 3syl6eq 2660 . . . 4 (𝑊 = ∅ → (𝑀 Σg 𝑊) = (0g𝑀))
54fveq2d 6107 . . 3 (𝑊 = ∅ → (𝐻‘(𝑀 Σg 𝑊)) = (𝐻‘(0g𝑀)))
6 coeq2 5202 . . . . . 6 (𝑊 = ∅ → (𝐻𝑊) = (𝐻 ∘ ∅))
7 co02 5566 . . . . . 6 (𝐻 ∘ ∅) = ∅
86, 7syl6eq 2660 . . . . 5 (𝑊 = ∅ → (𝐻𝑊) = ∅)
98oveq2d 6565 . . . 4 (𝑊 = ∅ → (𝑁 Σg (𝐻𝑊)) = (𝑁 Σg ∅))
10 eqid 2610 . . . . 5 (0g𝑁) = (0g𝑁)
1110gsum0 17101 . . . 4 (𝑁 Σg ∅) = (0g𝑁)
129, 11syl6eq 2660 . . 3 (𝑊 = ∅ → (𝑁 Σg (𝐻𝑊)) = (0g𝑁))
135, 12eqeq12d 2625 . 2 (𝑊 = ∅ → ((𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)) ↔ (𝐻‘(0g𝑀)) = (0g𝑁)))
14 mhmrcl1 17161 . . . . . 6 (𝐻 ∈ (𝑀 MndHom 𝑁) → 𝑀 ∈ Mnd)
1514ad2antrr 758 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑀 ∈ Mnd)
16 gsumwmhm.b . . . . . . 7 𝐵 = (Base‘𝑀)
17 eqid 2610 . . . . . . 7 (+g𝑀) = (+g𝑀)
1816, 17mndcl 17124 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
19183expb 1258 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
2015, 19sylan 487 . . . 4 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
21 wrdf 13165 . . . . . . 7 (𝑊 ∈ Word 𝐵𝑊:(0..^(#‘𝑊))⟶𝐵)
2221ad2antlr 759 . . . . . 6 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊:(0..^(#‘𝑊))⟶𝐵)
23 wrdfin 13178 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝐵𝑊 ∈ Fin)
2423adantl 481 . . . . . . . . . . 11 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → 𝑊 ∈ Fin)
25 hashnncl 13018 . . . . . . . . . . 11 (𝑊 ∈ Fin → ((#‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
2624, 25syl 17 . . . . . . . . . 10 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → ((#‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
2726biimpar 501 . . . . . . . . 9 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (#‘𝑊) ∈ ℕ)
2827nnzd 11357 . . . . . . . 8 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (#‘𝑊) ∈ ℤ)
29 fzoval 12340 . . . . . . . 8 ((#‘𝑊) ∈ ℤ → (0..^(#‘𝑊)) = (0...((#‘𝑊) − 1)))
3028, 29syl 17 . . . . . . 7 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (0..^(#‘𝑊)) = (0...((#‘𝑊) − 1)))
3130feq2d 5944 . . . . . 6 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝑊:(0..^(#‘𝑊))⟶𝐵𝑊:(0...((#‘𝑊) − 1))⟶𝐵))
3222, 31mpbid 221 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((#‘𝑊) − 1))⟶𝐵)
3332ffvelrnda 6267 . . . 4 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((#‘𝑊) − 1))) → (𝑊𝑥) ∈ 𝐵)
34 nnm1nn0 11211 . . . . . 6 ((#‘𝑊) ∈ ℕ → ((#‘𝑊) − 1) ∈ ℕ0)
3527, 34syl 17 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → ((#‘𝑊) − 1) ∈ ℕ0)
36 nn0uz 11598 . . . . 5 0 = (ℤ‘0)
3735, 36syl6eleq 2698 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → ((#‘𝑊) − 1) ∈ (ℤ‘0))
38 simpll 786 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝐻 ∈ (𝑀 MndHom 𝑁))
39 eqid 2610 . . . . . . 7 (+g𝑁) = (+g𝑁)
4016, 17, 39mhmlin 17165 . . . . . 6 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑥𝐵𝑦𝐵) → (𝐻‘(𝑥(+g𝑀)𝑦)) = ((𝐻𝑥)(+g𝑁)(𝐻𝑦)))
41403expb 1258 . . . . 5 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ (𝑥𝐵𝑦𝐵)) → (𝐻‘(𝑥(+g𝑀)𝑦)) = ((𝐻𝑥)(+g𝑁)(𝐻𝑦)))
4238, 41sylan 487 . . . 4 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ (𝑥𝐵𝑦𝐵)) → (𝐻‘(𝑥(+g𝑀)𝑦)) = ((𝐻𝑥)(+g𝑁)(𝐻𝑦)))
43 ffn 5958 . . . . . . 7 (𝑊:(0...((#‘𝑊) − 1))⟶𝐵𝑊 Fn (0...((#‘𝑊) − 1)))
4432, 43syl 17 . . . . . 6 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊 Fn (0...((#‘𝑊) − 1)))
45 fvco2 6183 . . . . . 6 ((𝑊 Fn (0...((#‘𝑊) − 1)) ∧ 𝑥 ∈ (0...((#‘𝑊) − 1))) → ((𝐻𝑊)‘𝑥) = (𝐻‘(𝑊𝑥)))
4644, 45sylan 487 . . . . 5 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((#‘𝑊) − 1))) → ((𝐻𝑊)‘𝑥) = (𝐻‘(𝑊𝑥)))
4746eqcomd 2616 . . . 4 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((#‘𝑊) − 1))) → (𝐻‘(𝑊𝑥)) = ((𝐻𝑊)‘𝑥))
4820, 33, 37, 42, 47seqhomo 12710 . . 3 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻‘(seq0((+g𝑀), 𝑊)‘((#‘𝑊) − 1))) = (seq0((+g𝑁), (𝐻𝑊))‘((#‘𝑊) − 1)))
4916, 17, 15, 37, 32gsumval2 17103 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝑀 Σg 𝑊) = (seq0((+g𝑀), 𝑊)‘((#‘𝑊) − 1)))
5049fveq2d 6107 . . 3 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻‘(𝑀 Σg 𝑊)) = (𝐻‘(seq0((+g𝑀), 𝑊)‘((#‘𝑊) − 1))))
51 eqid 2610 . . . 4 (Base‘𝑁) = (Base‘𝑁)
52 mhmrcl2 17162 . . . . 5 (𝐻 ∈ (𝑀 MndHom 𝑁) → 𝑁 ∈ Mnd)
5352ad2antrr 758 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑁 ∈ Mnd)
5416, 51mhmf 17163 . . . . . 6 (𝐻 ∈ (𝑀 MndHom 𝑁) → 𝐻:𝐵⟶(Base‘𝑁))
5554ad2antrr 758 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝐻:𝐵⟶(Base‘𝑁))
56 fco 5971 . . . . 5 ((𝐻:𝐵⟶(Base‘𝑁) ∧ 𝑊:(0...((#‘𝑊) − 1))⟶𝐵) → (𝐻𝑊):(0...((#‘𝑊) − 1))⟶(Base‘𝑁))
5755, 32, 56syl2anc 691 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻𝑊):(0...((#‘𝑊) − 1))⟶(Base‘𝑁))
5851, 39, 53, 37, 57gsumval2 17103 . . 3 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝑁 Σg (𝐻𝑊)) = (seq0((+g𝑁), (𝐻𝑊))‘((#‘𝑊) − 1)))
5948, 50, 583eqtr4d 2654 . 2 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)))
602, 10mhm0 17166 . . 3 (𝐻 ∈ (𝑀 MndHom 𝑁) → (𝐻‘(0g𝑀)) = (0g𝑁))
6160adantr 480 . 2 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → (𝐻‘(0g𝑀)) = (0g𝑁))
6213, 59, 61pm2.61ne 2867 1 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → (𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  c0 3874  ccom 5042   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  0cc0 9815  1c1 9816  cmin 10145  cn 10897  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  ..^cfzo 12334  seqcseq 12663  #chash 12979  Word cword 13146  Basecbs 15695  +gcplusg 15768  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117   MndHom cmhm 17156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-word 13154  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158
This theorem is referenced by:  frmdup3lem  17226  symgtrinv  17715  frgpup3lem  18013
  Copyright terms: Public domain W3C validator