MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwmhm Structured version   Unicode version

Theorem gsumwmhm 15845
Description: Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Hypothesis
Ref Expression
gsumwmhm.b  |-  B  =  ( Base `  M
)
Assertion
Ref Expression
gsumwmhm  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )

Proof of Theorem gsumwmhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6292 . . . . 5  |-  ( W  =  (/)  ->  ( M 
gsumg  W )  =  ( M  gsumg  (/) ) )
2 eqid 2467 . . . . . 6  |-  ( 0g
`  M )  =  ( 0g `  M
)
32gsum0 15832 . . . . 5  |-  ( M 
gsumg  (/) )  =  ( 0g
`  M )
41, 3syl6eq 2524 . . . 4  |-  ( W  =  (/)  ->  ( M 
gsumg  W )  =  ( 0g `  M ) )
54fveq2d 5870 . . 3  |-  ( W  =  (/)  ->  ( H `
 ( M  gsumg  W ) )  =  ( H `
 ( 0g `  M ) ) )
6 coeq2 5161 . . . . . 6  |-  ( W  =  (/)  ->  ( H  o.  W )  =  ( H  o.  (/) ) )
7 co02 5521 . . . . . 6  |-  ( H  o.  (/) )  =  (/)
86, 7syl6eq 2524 . . . . 5  |-  ( W  =  (/)  ->  ( H  o.  W )  =  (/) )
98oveq2d 6300 . . . 4  |-  ( W  =  (/)  ->  ( N 
gsumg  ( H  o.  W
) )  =  ( N  gsumg  (/) ) )
10 eqid 2467 . . . . 5  |-  ( 0g
`  N )  =  ( 0g `  N
)
1110gsum0 15832 . . . 4  |-  ( N 
gsumg  (/) )  =  ( 0g
`  N )
129, 11syl6eq 2524 . . 3  |-  ( W  =  (/)  ->  ( N 
gsumg  ( H  o.  W
) )  =  ( 0g `  N ) )
135, 12eqeq12d 2489 . 2  |-  ( W  =  (/)  ->  ( ( H `  ( M 
gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) )  <->  ( H `  ( 0g `  M
) )  =  ( 0g `  N ) ) )
14 mhmrcl1 15789 . . . . . 6  |-  ( H  e.  ( M MndHom  N
)  ->  M  e.  Mnd )
1514ad2antrr 725 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  M  e.  Mnd )
16 gsumwmhm.b . . . . . . 7  |-  B  =  ( Base `  M
)
17 eqid 2467 . . . . . . 7  |-  ( +g  `  M )  =  ( +g  `  M )
1816, 17mndcl 15737 . . . . . 6  |-  ( ( M  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  M ) y )  e.  B )
19183expb 1197 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  M
) y )  e.  B )
2015, 19sylan 471 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  M ) y )  e.  B )
21 wrdf 12519 . . . . . . 7  |-  ( W  e. Word  B  ->  W : ( 0..^ (
# `  W )
) --> B )
2221ad2antlr 726 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W : ( 0..^ (
# `  W )
) --> B )
23 wrdfin 12527 . . . . . . . . . . . 12  |-  ( W  e. Word  B  ->  W  e.  Fin )
2423adantl 466 . . . . . . . . . . 11  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  W  e.  Fin )
25 hashnncl 12404 . . . . . . . . . . 11  |-  ( W  e.  Fin  ->  (
( # `  W )  e.  NN  <->  W  =/=  (/) ) )
2624, 25syl 16 . . . . . . . . . 10  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  (
( # `  W )  e.  NN  <->  W  =/=  (/) ) )
2726biimpar 485 . . . . . . . . 9  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( # `  W )  e.  NN )
2827nnzd 10965 . . . . . . . 8  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( # `  W )  e.  ZZ )
29 fzoval 11798 . . . . . . . 8  |-  ( (
# `  W )  e.  ZZ  ->  ( 0..^ ( # `  W
) )  =  ( 0 ... ( (
# `  W )  -  1 ) ) )
3028, 29syl 16 . . . . . . 7  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( 0..^ ( # `  W ) )  =  ( 0 ... (
( # `  W )  -  1 ) ) )
3130feq2d 5718 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( W : ( 0..^ ( # `  W
) ) --> B  <->  W :
( 0 ... (
( # `  W )  -  1 ) ) --> B ) )
3222, 31mpbid 210 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W : ( 0 ... ( ( # `  W
)  -  1 ) ) --> B )
3332ffvelrnda 6021 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) )  ->  ( W `  x )  e.  B
)
34 nnm1nn0 10837 . . . . . 6  |-  ( (
# `  W )  e.  NN  ->  ( ( # `
 W )  - 
1 )  e.  NN0 )
3527, 34syl 16 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( ( # `  W
)  -  1 )  e.  NN0 )
36 nn0uz 11116 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
3735, 36syl6eleq 2565 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( ( # `  W
)  -  1 )  e.  ( ZZ>= `  0
) )
38 simpll 753 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  H  e.  ( M MndHom  N ) )
39 eqid 2467 . . . . . . 7  |-  ( +g  `  N )  =  ( +g  `  N )
4016, 17, 39mhmlin 15793 . . . . . 6  |-  ( ( H  e.  ( M MndHom  N )  /\  x  e.  B  /\  y  e.  B )  ->  ( H `  ( x
( +g  `  M ) y ) )  =  ( ( H `  x ) ( +g  `  N ) ( H `
 y ) ) )
41403expb 1197 . . . . 5  |-  ( ( H  e.  ( M MndHom  N )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( H `  ( x ( +g  `  M ) y ) )  =  ( ( H `  x ) ( +g  `  N
) ( H `  y ) ) )
4238, 41sylan 471 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( H `  (
x ( +g  `  M
) y ) )  =  ( ( H `
 x ) ( +g  `  N ) ( H `  y
) ) )
43 ffn 5731 . . . . . . 7  |-  ( W : ( 0 ... ( ( # `  W
)  -  1 ) ) --> B  ->  W  Fn  ( 0 ... (
( # `  W )  -  1 ) ) )
4432, 43syl 16 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W  Fn  ( 0 ... ( ( # `  W )  -  1 ) ) )
45 fvco2 5942 . . . . . 6  |-  ( ( W  Fn  ( 0 ... ( ( # `  W )  -  1 ) )  /\  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) )  ->  ( ( H  o.  W ) `  x )  =  ( H `  ( W `
 x ) ) )
4644, 45sylan 471 . . . . 5  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) )  ->  ( ( H  o.  W ) `  x )  =  ( H `  ( W `
 x ) ) )
4746eqcomd 2475 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) )  ->  ( H `  ( W `  x
) )  =  ( ( H  o.  W
) `  x )
)
4820, 33, 37, 42, 47seqhomo 12122 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  (  seq 0 ( ( +g  `  M ) ,  W
) `  ( ( # `
 W )  - 
1 ) ) )  =  (  seq 0
( ( +g  `  N
) ,  ( H  o.  W ) ) `
 ( ( # `  W )  -  1 ) ) )
4916, 17, 15, 37, 32gsumval2 15835 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( M  gsumg  W )  =  (  seq 0 ( ( +g  `  M ) ,  W ) `  ( ( # `  W
)  -  1 ) ) )
5049fveq2d 5870 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( H `  (  seq 0 ( ( +g  `  M ) ,  W
) `  ( ( # `
 W )  - 
1 ) ) ) )
51 eqid 2467 . . . 4  |-  ( Base `  N )  =  (
Base `  N )
52 mhmrcl2 15790 . . . . 5  |-  ( H  e.  ( M MndHom  N
)  ->  N  e.  Mnd )
5352ad2antrr 725 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  N  e.  Mnd )
5416, 51mhmf 15791 . . . . . 6  |-  ( H  e.  ( M MndHom  N
)  ->  H : B
--> ( Base `  N
) )
5554ad2antrr 725 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  H : B --> ( Base `  N ) )
56 fco 5741 . . . . 5  |-  ( ( H : B --> ( Base `  N )  /\  W : ( 0 ... ( ( # `  W
)  -  1 ) ) --> B )  -> 
( H  o.  W
) : ( 0 ... ( ( # `  W )  -  1 ) ) --> ( Base `  N ) )
5755, 32, 56syl2anc 661 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H  o.  W
) : ( 0 ... ( ( # `  W )  -  1 ) ) --> ( Base `  N ) )
5851, 39, 53, 37, 57gsumval2 15835 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( N  gsumg  ( H  o.  W
) )  =  (  seq 0 ( ( +g  `  N ) ,  ( H  o.  W ) ) `  ( ( # `  W
)  -  1 ) ) )
5948, 50, 583eqtr4d 2518 . 2  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )
602, 10mhm0 15794 . . 3  |-  ( H  e.  ( M MndHom  N
)  ->  ( H `  ( 0g `  M
) )  =  ( 0g `  N ) )
6160adantr 465 . 2  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H `  ( 0g `  M ) )  =  ( 0g `  N
) )
6213, 59, 61pm2.61ne 2782 1  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   (/)c0 3785    o. ccom 5003    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6284   Fincfn 7516   0cc0 9492   1c1 9493    - cmin 9805   NNcn 10536   NN0cn0 10795   ZZcz 10864   ZZ>=cuz 11082   ...cfz 11672  ..^cfzo 11792    seqcseq 12075   #chash 12373  Word cword 12500   Basecbs 14490   +g cplusg 14555   0gc0g 14695    gsumg cgsu 14696   Mndcmnd 15726   MndHom cmhm 15784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-n0 10796  df-z 10865  df-uz 11083  df-fz 11673  df-fzo 11793  df-seq 12076  df-hash 12374  df-word 12508  df-0g 14697  df-gsum 14698  df-mnd 15732  df-mhm 15786
This theorem is referenced by:  frmdup3  15866  symgtrinv  16303  frgpup3lem  16601
  Copyright terms: Public domain W3C validator