MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwmhm Structured version   Unicode version

Theorem gsumwmhm 16580
Description: Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Hypothesis
Ref Expression
gsumwmhm.b  |-  B  =  ( Base `  M
)
Assertion
Ref Expression
gsumwmhm  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )

Proof of Theorem gsumwmhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6313 . . . . 5  |-  ( W  =  (/)  ->  ( M 
gsumg  W )  =  ( M  gsumg  (/) ) )
2 eqid 2429 . . . . . 6  |-  ( 0g
`  M )  =  ( 0g `  M
)
32gsum0 16472 . . . . 5  |-  ( M 
gsumg  (/) )  =  ( 0g
`  M )
41, 3syl6eq 2486 . . . 4  |-  ( W  =  (/)  ->  ( M 
gsumg  W )  =  ( 0g `  M ) )
54fveq2d 5885 . . 3  |-  ( W  =  (/)  ->  ( H `
 ( M  gsumg  W ) )  =  ( H `
 ( 0g `  M ) ) )
6 coeq2 5013 . . . . . 6  |-  ( W  =  (/)  ->  ( H  o.  W )  =  ( H  o.  (/) ) )
7 co02 5369 . . . . . 6  |-  ( H  o.  (/) )  =  (/)
86, 7syl6eq 2486 . . . . 5  |-  ( W  =  (/)  ->  ( H  o.  W )  =  (/) )
98oveq2d 6321 . . . 4  |-  ( W  =  (/)  ->  ( N 
gsumg  ( H  o.  W
) )  =  ( N  gsumg  (/) ) )
10 eqid 2429 . . . . 5  |-  ( 0g
`  N )  =  ( 0g `  N
)
1110gsum0 16472 . . . 4  |-  ( N 
gsumg  (/) )  =  ( 0g
`  N )
129, 11syl6eq 2486 . . 3  |-  ( W  =  (/)  ->  ( N 
gsumg  ( H  o.  W
) )  =  ( 0g `  N ) )
135, 12eqeq12d 2451 . 2  |-  ( W  =  (/)  ->  ( ( H `  ( M 
gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) )  <->  ( H `  ( 0g `  M
) )  =  ( 0g `  N ) ) )
14 mhmrcl1 16536 . . . . . 6  |-  ( H  e.  ( M MndHom  N
)  ->  M  e.  Mnd )
1514ad2antrr 730 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  M  e.  Mnd )
16 gsumwmhm.b . . . . . . 7  |-  B  =  ( Base `  M
)
17 eqid 2429 . . . . . . 7  |-  ( +g  `  M )  =  ( +g  `  M )
1816, 17mndcl 16496 . . . . . 6  |-  ( ( M  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  M ) y )  e.  B )
19183expb 1206 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  M
) y )  e.  B )
2015, 19sylan 473 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  M ) y )  e.  B )
21 wrdf 12663 . . . . . . 7  |-  ( W  e. Word  B  ->  W : ( 0..^ (
# `  W )
) --> B )
2221ad2antlr 731 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W : ( 0..^ (
# `  W )
) --> B )
23 wrdfin 12673 . . . . . . . . . . . 12  |-  ( W  e. Word  B  ->  W  e.  Fin )
2423adantl 467 . . . . . . . . . . 11  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  W  e.  Fin )
25 hashnncl 12544 . . . . . . . . . . 11  |-  ( W  e.  Fin  ->  (
( # `  W )  e.  NN  <->  W  =/=  (/) ) )
2624, 25syl 17 . . . . . . . . . 10  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  (
( # `  W )  e.  NN  <->  W  =/=  (/) ) )
2726biimpar 487 . . . . . . . . 9  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( # `  W )  e.  NN )
2827nnzd 11039 . . . . . . . 8  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( # `  W )  e.  ZZ )
29 fzoval 11919 . . . . . . . 8  |-  ( (
# `  W )  e.  ZZ  ->  ( 0..^ ( # `  W
) )  =  ( 0 ... ( (
# `  W )  -  1 ) ) )
3028, 29syl 17 . . . . . . 7  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( 0..^ ( # `  W ) )  =  ( 0 ... (
( # `  W )  -  1 ) ) )
3130feq2d 5733 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( W : ( 0..^ ( # `  W
) ) --> B  <->  W :
( 0 ... (
( # `  W )  -  1 ) ) --> B ) )
3222, 31mpbid 213 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W : ( 0 ... ( ( # `  W
)  -  1 ) ) --> B )
3332ffvelrnda 6037 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) )  ->  ( W `  x )  e.  B
)
34 nnm1nn0 10911 . . . . . 6  |-  ( (
# `  W )  e.  NN  ->  ( ( # `
 W )  - 
1 )  e.  NN0 )
3527, 34syl 17 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( ( # `  W
)  -  1 )  e.  NN0 )
36 nn0uz 11193 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
3735, 36syl6eleq 2527 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( ( # `  W
)  -  1 )  e.  ( ZZ>= `  0
) )
38 simpll 758 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  H  e.  ( M MndHom  N ) )
39 eqid 2429 . . . . . . 7  |-  ( +g  `  N )  =  ( +g  `  N )
4016, 17, 39mhmlin 16540 . . . . . 6  |-  ( ( H  e.  ( M MndHom  N )  /\  x  e.  B  /\  y  e.  B )  ->  ( H `  ( x
( +g  `  M ) y ) )  =  ( ( H `  x ) ( +g  `  N ) ( H `
 y ) ) )
41403expb 1206 . . . . 5  |-  ( ( H  e.  ( M MndHom  N )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( H `  ( x ( +g  `  M ) y ) )  =  ( ( H `  x ) ( +g  `  N
) ( H `  y ) ) )
4238, 41sylan 473 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( H `  (
x ( +g  `  M
) y ) )  =  ( ( H `
 x ) ( +g  `  N ) ( H `  y
) ) )
43 ffn 5746 . . . . . . 7  |-  ( W : ( 0 ... ( ( # `  W
)  -  1 ) ) --> B  ->  W  Fn  ( 0 ... (
( # `  W )  -  1 ) ) )
4432, 43syl 17 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W  Fn  ( 0 ... ( ( # `  W )  -  1 ) ) )
45 fvco2 5956 . . . . . 6  |-  ( ( W  Fn  ( 0 ... ( ( # `  W )  -  1 ) )  /\  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) )  ->  ( ( H  o.  W ) `  x )  =  ( H `  ( W `
 x ) ) )
4644, 45sylan 473 . . . . 5  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) )  ->  ( ( H  o.  W ) `  x )  =  ( H `  ( W `
 x ) ) )
4746eqcomd 2437 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) )  ->  ( H `  ( W `  x
) )  =  ( ( H  o.  W
) `  x )
)
4820, 33, 37, 42, 47seqhomo 12257 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  (  seq 0 ( ( +g  `  M ) ,  W
) `  ( ( # `
 W )  - 
1 ) ) )  =  (  seq 0
( ( +g  `  N
) ,  ( H  o.  W ) ) `
 ( ( # `  W )  -  1 ) ) )
4916, 17, 15, 37, 32gsumval2 16474 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( M  gsumg  W )  =  (  seq 0 ( ( +g  `  M ) ,  W ) `  ( ( # `  W
)  -  1 ) ) )
5049fveq2d 5885 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( H `  (  seq 0 ( ( +g  `  M ) ,  W
) `  ( ( # `
 W )  - 
1 ) ) ) )
51 eqid 2429 . . . 4  |-  ( Base `  N )  =  (
Base `  N )
52 mhmrcl2 16537 . . . . 5  |-  ( H  e.  ( M MndHom  N
)  ->  N  e.  Mnd )
5352ad2antrr 730 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  N  e.  Mnd )
5416, 51mhmf 16538 . . . . . 6  |-  ( H  e.  ( M MndHom  N
)  ->  H : B
--> ( Base `  N
) )
5554ad2antrr 730 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  H : B --> ( Base `  N ) )
56 fco 5756 . . . . 5  |-  ( ( H : B --> ( Base `  N )  /\  W : ( 0 ... ( ( # `  W
)  -  1 ) ) --> B )  -> 
( H  o.  W
) : ( 0 ... ( ( # `  W )  -  1 ) ) --> ( Base `  N ) )
5755, 32, 56syl2anc 665 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H  o.  W
) : ( 0 ... ( ( # `  W )  -  1 ) ) --> ( Base `  N ) )
5851, 39, 53, 37, 57gsumval2 16474 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( N  gsumg  ( H  o.  W
) )  =  (  seq 0 ( ( +g  `  N ) ,  ( H  o.  W ) ) `  ( ( # `  W
)  -  1 ) ) )
5948, 50, 583eqtr4d 2480 . 2  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )
602, 10mhm0 16541 . . 3  |-  ( H  e.  ( M MndHom  N
)  ->  ( H `  ( 0g `  M
) )  =  ( 0g `  N ) )
6160adantr 466 . 2  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H `  ( 0g `  M ) )  =  ( 0g `  N
) )
6213, 59, 61pm2.61ne 2746 1  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870    =/= wne 2625   (/)c0 3767    o. ccom 4858    Fn wfn 5596   -->wf 5597   ` cfv 5601  (class class class)co 6305   Fincfn 7577   0cc0 9538   1c1 9539    - cmin 9859   NNcn 10609   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   ...cfz 11782  ..^cfzo 11913    seqcseq 12210   #chash 12512  Word cword 12643   Basecbs 15084   +g cplusg 15152   0gc0g 15297    gsumg cgsu 15298   Mndcmnd 16486   MndHom cmhm 16531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-map 7482  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11783  df-fzo 11914  df-seq 12211  df-hash 12513  df-word 12651  df-0g 15299  df-gsum 15300  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-mhm 16533
This theorem is referenced by:  frmdup3lem  16601  symgtrinv  17064  frgpup3lem  17362
  Copyright terms: Public domain W3C validator