MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwspan Structured version   Visualization version   GIF version

Theorem gsumwspan 17206
Description: The submonoid generated by a set of elements is precisely the set of elements which can be expressed as finite products of the generator. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
gsumwspan.b 𝐵 = (Base‘𝑀)
gsumwspan.k 𝐾 = (mrCls‘(SubMnd‘𝑀))
Assertion
Ref Expression
gsumwspan ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) = ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
Distinct variable groups:   𝑤,𝐺   𝑤,𝐵   𝑤,𝑀   𝑤,𝐾

Proof of Theorem gsumwspan
Dummy variables 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumwspan.b . . . . . 6 𝐵 = (Base‘𝑀)
21submacs 17188 . . . . 5 (𝑀 ∈ Mnd → (SubMnd‘𝑀) ∈ (ACS‘𝐵))
32acsmred 16140 . . . 4 (𝑀 ∈ Mnd → (SubMnd‘𝑀) ∈ (Moore‘𝐵))
43adantr 480 . . 3 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (SubMnd‘𝑀) ∈ (Moore‘𝐵))
5 simpr 476 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → 𝑥𝐺)
65s1cld 13236 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → ⟨“𝑥”⟩ ∈ Word 𝐺)
7 ssel2 3563 . . . . . . . . . 10 ((𝐺𝐵𝑥𝐺) → 𝑥𝐵)
87adantll 746 . . . . . . . . 9 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → 𝑥𝐵)
91gsumws1 17199 . . . . . . . . 9 (𝑥𝐵 → (𝑀 Σg ⟨“𝑥”⟩) = 𝑥)
108, 9syl 17 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → (𝑀 Σg ⟨“𝑥”⟩) = 𝑥)
1110eqcomd 2616 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → 𝑥 = (𝑀 Σg ⟨“𝑥”⟩))
12 oveq2 6557 . . . . . . . . 9 (𝑤 = ⟨“𝑥”⟩ → (𝑀 Σg 𝑤) = (𝑀 Σg ⟨“𝑥”⟩))
1312eqeq2d 2620 . . . . . . . 8 (𝑤 = ⟨“𝑥”⟩ → (𝑥 = (𝑀 Σg 𝑤) ↔ 𝑥 = (𝑀 Σg ⟨“𝑥”⟩)))
1413rspcev 3282 . . . . . . 7 ((⟨“𝑥”⟩ ∈ Word 𝐺𝑥 = (𝑀 Σg ⟨“𝑥”⟩)) → ∃𝑤 ∈ Word 𝐺𝑥 = (𝑀 Σg 𝑤))
156, 11, 14syl2anc 691 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → ∃𝑤 ∈ Word 𝐺𝑥 = (𝑀 Σg 𝑤))
16 vex 3176 . . . . . . 7 𝑥 ∈ V
17 eqid 2610 . . . . . . . 8 (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))
1817elrnmpt 5293 . . . . . . 7 (𝑥 ∈ V → (𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺𝑥 = (𝑀 Σg 𝑤)))
1916, 18ax-mp 5 . . . . . 6 (𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺𝑥 = (𝑀 Σg 𝑤))
2015, 19sylibr 223 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑥𝐺) → 𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
2120ex 449 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝑥𝐺𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
2221ssrdv 3574 . . 3 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → 𝐺 ⊆ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
23 gsumwspan.k . . . . . . . . . . 11 𝐾 = (mrCls‘(SubMnd‘𝑀))
2423mrccl 16094 . . . . . . . . . 10 (((SubMnd‘𝑀) ∈ (Moore‘𝐵) ∧ 𝐺𝐵) → (𝐾𝐺) ∈ (SubMnd‘𝑀))
253, 24sylan 487 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) ∈ (SubMnd‘𝑀))
2625adantr 480 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑤 ∈ Word 𝐺) → (𝐾𝐺) ∈ (SubMnd‘𝑀))
2723mrcssid 16100 . . . . . . . . . . 11 (((SubMnd‘𝑀) ∈ (Moore‘𝐵) ∧ 𝐺𝐵) → 𝐺 ⊆ (𝐾𝐺))
283, 27sylan 487 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → 𝐺 ⊆ (𝐾𝐺))
29 sswrd 13168 . . . . . . . . . 10 (𝐺 ⊆ (𝐾𝐺) → Word 𝐺 ⊆ Word (𝐾𝐺))
3028, 29syl 17 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → Word 𝐺 ⊆ Word (𝐾𝐺))
3130sselda 3568 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑤 ∈ Word 𝐺) → 𝑤 ∈ Word (𝐾𝐺))
32 gsumwsubmcl 17198 . . . . . . . 8 (((𝐾𝐺) ∈ (SubMnd‘𝑀) ∧ 𝑤 ∈ Word (𝐾𝐺)) → (𝑀 Σg 𝑤) ∈ (𝐾𝐺))
3326, 31, 32syl2anc 691 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ 𝑤 ∈ Word 𝐺) → (𝑀 Σg 𝑤) ∈ (𝐾𝐺))
3433, 17fmptd 6292 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)):Word 𝐺⟶(𝐾𝐺))
35 frn 5966 . . . . . 6 ((𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)):Word 𝐺⟶(𝐾𝐺) → ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ (𝐾𝐺))
3634, 35syl 17 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ (𝐾𝐺))
373, 23mrcssvd 16106 . . . . . 6 (𝑀 ∈ Mnd → (𝐾𝐺) ⊆ 𝐵)
3837adantr 480 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) ⊆ 𝐵)
3936, 38sstrd 3578 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ 𝐵)
40 wrd0 13185 . . . . . 6 ∅ ∈ Word 𝐺
41 eqid 2610 . . . . . . . . 9 (0g𝑀) = (0g𝑀)
4241gsum0 17101 . . . . . . . 8 (𝑀 Σg ∅) = (0g𝑀)
4342eqcomi 2619 . . . . . . 7 (0g𝑀) = (𝑀 Σg ∅)
4443a1i 11 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (0g𝑀) = (𝑀 Σg ∅))
45 oveq2 6557 . . . . . . . 8 (𝑤 = ∅ → (𝑀 Σg 𝑤) = (𝑀 Σg ∅))
4645eqeq2d 2620 . . . . . . 7 (𝑤 = ∅ → ((0g𝑀) = (𝑀 Σg 𝑤) ↔ (0g𝑀) = (𝑀 Σg ∅)))
4746rspcev 3282 . . . . . 6 ((∅ ∈ Word 𝐺 ∧ (0g𝑀) = (𝑀 Σg ∅)) → ∃𝑤 ∈ Word 𝐺(0g𝑀) = (𝑀 Σg 𝑤))
4840, 44, 47sylancr 694 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ∃𝑤 ∈ Word 𝐺(0g𝑀) = (𝑀 Σg 𝑤))
49 fvex 6113 . . . . . 6 (0g𝑀) ∈ V
5017elrnmpt 5293 . . . . . 6 ((0g𝑀) ∈ V → ((0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺(0g𝑀) = (𝑀 Σg 𝑤)))
5149, 50ax-mp 5 . . . . 5 ((0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺(0g𝑀) = (𝑀 Σg 𝑤))
5248, 51sylibr 223 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
53 ccatcl 13212 . . . . . . . . 9 ((𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺) → (𝑧 ++ 𝑣) ∈ Word 𝐺)
5453adantl 481 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → (𝑧 ++ 𝑣) ∈ Word 𝐺)
55 simpll 786 . . . . . . . . . 10 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑀 ∈ Mnd)
56 sswrd 13168 . . . . . . . . . . . 12 (𝐺𝐵 → Word 𝐺 ⊆ Word 𝐵)
5756ad2antlr 759 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → Word 𝐺 ⊆ Word 𝐵)
58 simprl 790 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑧 ∈ Word 𝐺)
5957, 58sseldd 3569 . . . . . . . . . 10 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑧 ∈ Word 𝐵)
60 simprr 792 . . . . . . . . . . 11 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑣 ∈ Word 𝐺)
6157, 60sseldd 3569 . . . . . . . . . 10 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → 𝑣 ∈ Word 𝐵)
62 eqid 2610 . . . . . . . . . . 11 (+g𝑀) = (+g𝑀)
631, 62gsumccat 17201 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ 𝑧 ∈ Word 𝐵𝑣 ∈ Word 𝐵) → (𝑀 Σg (𝑧 ++ 𝑣)) = ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)))
6455, 59, 61, 63syl3anc 1318 . . . . . . . . 9 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → (𝑀 Σg (𝑧 ++ 𝑣)) = ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)))
6564eqcomd 2616 . . . . . . . 8 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg (𝑧 ++ 𝑣)))
66 oveq2 6557 . . . . . . . . . 10 (𝑤 = (𝑧 ++ 𝑣) → (𝑀 Σg 𝑤) = (𝑀 Σg (𝑧 ++ 𝑣)))
6766eqeq2d 2620 . . . . . . . . 9 (𝑤 = (𝑧 ++ 𝑣) → (((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤) ↔ ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg (𝑧 ++ 𝑣))))
6867rspcev 3282 . . . . . . . 8 (((𝑧 ++ 𝑣) ∈ Word 𝐺 ∧ ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg (𝑧 ++ 𝑣))) → ∃𝑤 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤))
6954, 65, 68syl2anc 691 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → ∃𝑤 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤))
70 ovex 6577 . . . . . . . 8 ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ V
7117elrnmpt 5293 . . . . . . . 8 (((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ V → (((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤)))
7270, 71ax-mp 5 . . . . . . 7 (((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∃𝑤 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) = (𝑀 Σg 𝑤))
7369, 72sylibr 223 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝐺𝐵) ∧ (𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺)) → ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
7473ralrimivva 2954 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ∀𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
75 oveq2 6557 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑀 Σg 𝑤) = (𝑀 Σg 𝑧))
7675cbvmptv 4678 . . . . . . . 8 (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))
7776rneqi 5273 . . . . . . 7 ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))
7877raleqi 3119 . . . . . 6 (∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
79 oveq2 6557 . . . . . . . . . . 11 (𝑤 = 𝑣 → (𝑀 Σg 𝑤) = (𝑀 Σg 𝑣))
8079cbvmptv 4678 . . . . . . . . . 10 (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))
8180rneqi 5273 . . . . . . . . 9 ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) = ran (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))
8281raleqi 3119 . . . . . . . 8 (∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑦 ∈ ran (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
83 eqid 2610 . . . . . . . . . 10 (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣)) = (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))
84 oveq2 6557 . . . . . . . . . . 11 (𝑦 = (𝑀 Σg 𝑣) → (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑀)(𝑀 Σg 𝑣)))
8584eleq1d 2672 . . . . . . . . . 10 (𝑦 = (𝑀 Σg 𝑣) → ((𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ (𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
8683, 85ralrnmpt 6276 . . . . . . . . 9 (∀𝑣 ∈ Word 𝐺(𝑀 Σg 𝑣) ∈ V → (∀𝑦 ∈ ran (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
87 ovex 6577 . . . . . . . . . 10 (𝑀 Σg 𝑣) ∈ V
8887a1i 11 . . . . . . . . 9 (𝑣 ∈ Word 𝐺 → (𝑀 Σg 𝑣) ∈ V)
8986, 88mprg 2910 . . . . . . . 8 (∀𝑦 ∈ ran (𝑣 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑣))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
9082, 89bitri 263 . . . . . . 7 (∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
9190ralbii 2963 . . . . . 6 (∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
92 eqid 2610 . . . . . . . 8 (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧)) = (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))
93 oveq1 6556 . . . . . . . . . 10 (𝑥 = (𝑀 Σg 𝑧) → (𝑥(+g𝑀)(𝑀 Σg 𝑣)) = ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)))
9493eleq1d 2672 . . . . . . . . 9 (𝑥 = (𝑀 Σg 𝑧) → ((𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
9594ralbidv 2969 . . . . . . . 8 (𝑥 = (𝑀 Σg 𝑧) → (∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
9692, 95ralrnmpt 6276 . . . . . . 7 (∀𝑧 ∈ Word 𝐺(𝑀 Σg 𝑧) ∈ V → (∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))))
97 ovex 6577 . . . . . . . 8 (𝑀 Σg 𝑧) ∈ V
9897a1i 11 . . . . . . 7 (𝑧 ∈ Word 𝐺 → (𝑀 Σg 𝑧) ∈ V)
9996, 98mprg 2910 . . . . . 6 (∀𝑥 ∈ ran (𝑧 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑧))∀𝑣 ∈ Word 𝐺(𝑥(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
10078, 91, 993bitri 285 . . . . 5 (∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ↔ ∀𝑧 ∈ Word 𝐺𝑣 ∈ Word 𝐺((𝑀 Σg 𝑧)(+g𝑀)(𝑀 Σg 𝑣)) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
10174, 100sylibr 223 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
1021, 41, 62issubm 17170 . . . . 5 (𝑀 ∈ Mnd → (ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∈ (SubMnd‘𝑀) ↔ (ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ 𝐵 ∧ (0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∧ ∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))))
103102adantr 480 . . . 4 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∈ (SubMnd‘𝑀) ↔ (ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ⊆ 𝐵 ∧ (0g𝑀) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∧ ∀𝑥 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))∀𝑦 ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤))(𝑥(+g𝑀)𝑦) ∈ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))))
10439, 52, 101, 103mpbir3and 1238 . . 3 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∈ (SubMnd‘𝑀))
10523mrcsscl 16103 . . 3 (((SubMnd‘𝑀) ∈ (Moore‘𝐵) ∧ 𝐺 ⊆ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∧ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)) ∈ (SubMnd‘𝑀)) → (𝐾𝐺) ⊆ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
1064, 22, 104, 105syl3anc 1318 . 2 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) ⊆ ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
107106, 36eqssd 3585 1 ((𝑀 ∈ Mnd ∧ 𝐺𝐵) → (𝐾𝐺) = ran (𝑤 ∈ Word 𝐺 ↦ (𝑀 Σg 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  wss 3540  c0 3874  cmpt 4643  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  Word cword 13146   ++ cconcat 13148  ⟨“cs1 13149  Basecbs 15695  +gcplusg 15768  0gc0g 15923   Σg cgsu 15924  Moorecmre 16065  mrClscmrc 16066  Mndcmnd 17117  SubMndcsubmnd 17157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159
This theorem is referenced by:  psgneldm2  17747  psgnfitr  17760
  Copyright terms: Public domain W3C validator