Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsmsymgrfix Structured version   Visualization version   GIF version

Theorem gsmsymgrfix 17671
 Description: The composition of permutations fixing one element also fixes this element. (Contributed by AV, 20-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
gsmsymgrfix ((𝑁 ∈ Fin ∧ 𝐾𝑁𝑊 ∈ Word 𝐵) → (∀𝑖 ∈ (0..^(#‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))
Distinct variable groups:   𝐵,𝑖   𝑖,𝐾   𝑖,𝑁   𝑖,𝑊
Allowed substitution hint:   𝑆(𝑖)

Proof of Theorem gsmsymgrfix
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3176 . . . . . . . . . . 11 𝑤 ∈ V
2 hasheq0 13015 . . . . . . . . . . 11 (𝑤 ∈ V → ((#‘𝑤) = 0 ↔ 𝑤 = ∅))
31, 2ax-mp 5 . . . . . . . . . 10 ((#‘𝑤) = 0 ↔ 𝑤 = ∅)
43biimpri 217 . . . . . . . . 9 (𝑤 = ∅ → (#‘𝑤) = 0)
54oveq2d 6565 . . . . . . . 8 (𝑤 = ∅ → (0..^(#‘𝑤)) = (0..^0))
6 fzo0 12361 . . . . . . . 8 (0..^0) = ∅
75, 6syl6eq 2660 . . . . . . 7 (𝑤 = ∅ → (0..^(#‘𝑤)) = ∅)
8 fveq1 6102 . . . . . . . . 9 (𝑤 = ∅ → (𝑤𝑖) = (∅‘𝑖))
98fveq1d 6105 . . . . . . . 8 (𝑤 = ∅ → ((𝑤𝑖)‘𝐾) = ((∅‘𝑖)‘𝐾))
109eqeq1d 2612 . . . . . . 7 (𝑤 = ∅ → (((𝑤𝑖)‘𝐾) = 𝐾 ↔ ((∅‘𝑖)‘𝐾) = 𝐾))
117, 10raleqbidv 3129 . . . . . 6 (𝑤 = ∅ → (∀𝑖 ∈ (0..^(#‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾))
12 oveq2 6557 . . . . . . . 8 (𝑤 = ∅ → (𝑆 Σg 𝑤) = (𝑆 Σg ∅))
1312fveq1d 6105 . . . . . . 7 (𝑤 = ∅ → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg ∅)‘𝐾))
1413eqeq1d 2612 . . . . . 6 (𝑤 = ∅ → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg ∅)‘𝐾) = 𝐾))
1511, 14imbi12d 333 . . . . 5 (𝑤 = ∅ → ((∀𝑖 ∈ (0..^(#‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg ∅)‘𝐾) = 𝐾)))
1615imbi2d 329 . . . 4 (𝑤 = ∅ → (((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(#‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg ∅)‘𝐾) = 𝐾))))
17 fveq2 6103 . . . . . . . 8 (𝑤 = 𝑦 → (#‘𝑤) = (#‘𝑦))
1817oveq2d 6565 . . . . . . 7 (𝑤 = 𝑦 → (0..^(#‘𝑤)) = (0..^(#‘𝑦)))
19 fveq1 6102 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤𝑖) = (𝑦𝑖))
2019fveq1d 6105 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑤𝑖)‘𝐾) = ((𝑦𝑖)‘𝐾))
2120eqeq1d 2612 . . . . . . 7 (𝑤 = 𝑦 → (((𝑤𝑖)‘𝐾) = 𝐾 ↔ ((𝑦𝑖)‘𝐾) = 𝐾))
2218, 21raleqbidv 3129 . . . . . 6 (𝑤 = 𝑦 → (∀𝑖 ∈ (0..^(#‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(#‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾))
23 oveq2 6557 . . . . . . . 8 (𝑤 = 𝑦 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑦))
2423fveq1d 6105 . . . . . . 7 (𝑤 = 𝑦 → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg 𝑦)‘𝐾))
2524eqeq1d 2612 . . . . . 6 (𝑤 = 𝑦 → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))
2622, 25imbi12d 333 . . . . 5 (𝑤 = 𝑦 → ((∀𝑖 ∈ (0..^(#‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ (0..^(#‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾)))
2726imbi2d 329 . . . 4 (𝑤 = 𝑦 → (((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(#‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(#‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))))
28 fveq2 6103 . . . . . . . 8 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (#‘𝑤) = (#‘(𝑦 ++ ⟨“𝑧”⟩)))
2928oveq2d 6565 . . . . . . 7 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (0..^(#‘𝑤)) = (0..^(#‘(𝑦 ++ ⟨“𝑧”⟩))))
30 fveq1 6102 . . . . . . . . 9 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑤𝑖) = ((𝑦 ++ ⟨“𝑧”⟩)‘𝑖))
3130fveq1d 6105 . . . . . . . 8 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑤𝑖)‘𝐾) = (((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾))
3231eqeq1d 2612 . . . . . . 7 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (((𝑤𝑖)‘𝐾) = 𝐾 ↔ (((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾))
3329, 32raleqbidv 3129 . . . . . 6 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (∀𝑖 ∈ (0..^(#‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(#‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾))
34 oveq2 6557 . . . . . . . 8 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (𝑆 Σg 𝑤) = (𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩)))
3534fveq1d 6105 . . . . . . 7 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾))
3635eqeq1d 2612 . . . . . 6 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))
3733, 36imbi12d 333 . . . . 5 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → ((∀𝑖 ∈ (0..^(#‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ (0..^(#‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾)))
3837imbi2d 329 . . . 4 (𝑤 = (𝑦 ++ ⟨“𝑧”⟩) → (((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(#‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(#‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))))
39 fveq2 6103 . . . . . . . 8 (𝑤 = 𝑊 → (#‘𝑤) = (#‘𝑊))
4039oveq2d 6565 . . . . . . 7 (𝑤 = 𝑊 → (0..^(#‘𝑤)) = (0..^(#‘𝑊)))
41 fveq1 6102 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑤𝑖) = (𝑊𝑖))
4241fveq1d 6105 . . . . . . . 8 (𝑤 = 𝑊 → ((𝑤𝑖)‘𝐾) = ((𝑊𝑖)‘𝐾))
4342eqeq1d 2612 . . . . . . 7 (𝑤 = 𝑊 → (((𝑤𝑖)‘𝐾) = 𝐾 ↔ ((𝑊𝑖)‘𝐾) = 𝐾))
4440, 43raleqbidv 3129 . . . . . 6 (𝑤 = 𝑊 → (∀𝑖 ∈ (0..^(#‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(#‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾))
45 oveq2 6557 . . . . . . . 8 (𝑤 = 𝑊 → (𝑆 Σg 𝑤) = (𝑆 Σg 𝑊))
4645fveq1d 6105 . . . . . . 7 (𝑤 = 𝑊 → ((𝑆 Σg 𝑤)‘𝐾) = ((𝑆 Σg 𝑊)‘𝐾))
4746eqeq1d 2612 . . . . . 6 (𝑤 = 𝑊 → (((𝑆 Σg 𝑤)‘𝐾) = 𝐾 ↔ ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))
4844, 47imbi12d 333 . . . . 5 (𝑤 = 𝑊 → ((∀𝑖 ∈ (0..^(#‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾) ↔ (∀𝑖 ∈ (0..^(#‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)))
4948imbi2d 329 . . . 4 (𝑤 = 𝑊 → (((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(#‘𝑤))((𝑤𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑤)‘𝐾) = 𝐾)) ↔ ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(#‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))))
50 gsmsymgrfix.s . . . . . . . . . 10 𝑆 = (SymGrp‘𝑁)
5150symgid 17644 . . . . . . . . 9 (𝑁 ∈ Fin → ( I ↾ 𝑁) = (0g𝑆))
5251adantr 480 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → ( I ↾ 𝑁) = (0g𝑆))
53 eqid 2610 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
5453gsum0 17101 . . . . . . . 8 (𝑆 Σg ∅) = (0g𝑆)
5552, 54syl6reqr 2663 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑆 Σg ∅) = ( I ↾ 𝑁))
5655fveq1d 6105 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → ((𝑆 Σg ∅)‘𝐾) = (( I ↾ 𝑁)‘𝐾))
57 fvresi 6344 . . . . . . 7 (𝐾𝑁 → (( I ↾ 𝑁)‘𝐾) = 𝐾)
5857adantl 481 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (( I ↾ 𝑁)‘𝐾) = 𝐾)
5956, 58eqtrd 2644 . . . . 5 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → ((𝑆 Σg ∅)‘𝐾) = 𝐾)
6059a1d 25 . . . 4 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ ∅ ((∅‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg ∅)‘𝐾) = 𝐾))
61 ccatws1len 13251 . . . . . . . . . 10 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (#‘(𝑦 ++ ⟨“𝑧”⟩)) = ((#‘𝑦) + 1))
6261oveq2d 6565 . . . . . . . . 9 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (0..^(#‘(𝑦 ++ ⟨“𝑧”⟩))) = (0..^((#‘𝑦) + 1)))
6362raleqdv 3121 . . . . . . . 8 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (∀𝑖 ∈ (0..^(#‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^((#‘𝑦) + 1))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾))
6463adantr 480 . . . . . . 7 (((𝑦 ∈ Word 𝐵𝑧𝐵) ∧ ((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(#‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))) → (∀𝑖 ∈ (0..^(#‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^((#‘𝑦) + 1))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾))
65 gsmsymgrfix.b . . . . . . . . 9 𝐵 = (Base‘𝑆)
6650, 65gsmsymgrfixlem1 17670 . . . . . . . 8 (((𝑦 ∈ Word 𝐵𝑧𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(#‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((#‘𝑦) + 1))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))
67663expb 1258 . . . . . . 7 (((𝑦 ∈ Word 𝐵𝑧𝐵) ∧ ((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(#‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))) → (∀𝑖 ∈ (0..^((#‘𝑦) + 1))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))
6864, 67sylbid 229 . . . . . 6 (((𝑦 ∈ Word 𝐵𝑧𝐵) ∧ ((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(#‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾))) → (∀𝑖 ∈ (0..^(#‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))
6968exp32 629 . . . . 5 ((𝑦 ∈ Word 𝐵𝑧𝐵) → ((𝑁 ∈ Fin ∧ 𝐾𝑁) → ((∀𝑖 ∈ (0..^(#‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾) → (∀𝑖 ∈ (0..^(#‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))))
7069a2d 29 . . . 4 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(#‘𝑦))((𝑦𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑦)‘𝐾) = 𝐾)) → ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(#‘(𝑦 ++ ⟨“𝑧”⟩)))(((𝑦 ++ ⟨“𝑧”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑦 ++ ⟨“𝑧”⟩))‘𝐾) = 𝐾))))
7116, 27, 38, 49, 60, 70wrdind 13328 . . 3 (𝑊 ∈ Word 𝐵 → ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (∀𝑖 ∈ (0..^(#‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)))
7271com12 32 . 2 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑊 ∈ Word 𝐵 → (∀𝑖 ∈ (0..^(#‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)))
73723impia 1253 1 ((𝑁 ∈ Fin ∧ 𝐾𝑁𝑊 ∈ Word 𝐵) → (∀𝑖 ∈ (0..^(#‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173  ∅c0 3874   I cid 4948   ↾ cres 5040  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  0cc0 9815  1c1 9816   + caddc 9818  ..^cfzo 12334  #chash 12979  Word cword 13146   ++ cconcat 13148  ⟨“cs1 13149  Basecbs 15695  0gc0g 15923   Σg cgsu 15924  SymGrpcsymg 17620 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-tset 15787  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-symg 17621 This theorem is referenced by:  psgndiflemB  19765
 Copyright terms: Public domain W3C validator