MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem5a Structured version   Visualization version   GIF version

Theorem gausslemma2dlem5a 24895
Description: Lemma for gausslemma2dlem5 24896. (Contributed by AV, 8-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem5a (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀,𝑘   𝑃,𝑘
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem gausslemma2dlem5a
StepHypRef Expression
1 gausslemma2d.p . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . . 4 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . . 4 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . . 4 𝑀 = (⌊‘(𝑃 / 4))
51, 2, 3, 4gausslemma2dlem3 24893 . . 3 (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
6 prodeq2 14483 . . . 4 (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)) → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)))
76oveq1d 6564 . . 3 (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)) → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃))
85, 7syl 17 . 2 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃))
9 eldifi 3694 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
10 fzfid 12634 . . . 4 (𝑃 ∈ ℙ → ((𝑀 + 1)...𝐻) ∈ Fin)
11 prmz 15227 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1211adantr 480 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑃 ∈ ℤ)
13 elfzelz 12213 . . . . . . 7 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ)
14 2z 11286 . . . . . . . 8 2 ∈ ℤ
1514a1i 11 . . . . . . 7 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℤ)
1613, 15zmulcld 11364 . . . . . 6 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℤ)
1716adantl 481 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℤ)
1812, 17zsubcld 11363 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ ℤ)
19 neg1z 11290 . . . . . . 7 -1 ∈ ℤ
2019a1i 11 . . . . . 6 (𝑘 ∈ ((𝑀 + 1)...𝐻) → -1 ∈ ℤ)
2120, 16zmulcld 11364 . . . . 5 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (-1 · (𝑘 · 2)) ∈ ℤ)
2221adantl 481 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-1 · (𝑘 · 2)) ∈ ℤ)
23 prmnn 15226 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2416zcnd 11359 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℂ)
2524mulm1d 10361 . . . . . . 7 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (-1 · (𝑘 · 2)) = -(𝑘 · 2))
2625adantl 481 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-1 · (𝑘 · 2)) = -(𝑘 · 2))
2726oveq1d 6564 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((-1 · (𝑘 · 2)) mod 𝑃) = (-(𝑘 · 2) mod 𝑃))
2816zred 11358 . . . . . 6 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℝ)
2923nnrpd 11746 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
30 negmod 12577 . . . . . 6 (((𝑘 · 2) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (-(𝑘 · 2) mod 𝑃) = ((𝑃 − (𝑘 · 2)) mod 𝑃))
3128, 29, 30syl2anr 494 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (-(𝑘 · 2) mod 𝑃) = ((𝑃 − (𝑘 · 2)) mod 𝑃))
3227, 31eqtr2d 2645 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((𝑃 − (𝑘 · 2)) mod 𝑃) = ((-1 · (𝑘 · 2)) mod 𝑃))
3310, 18, 22, 23, 32fprodmodd 14567 . . 3 (𝑃 ∈ ℙ → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃))
341, 9, 333syl 18 . 2 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑃 − (𝑘 · 2)) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃))
358, 34eqtrd 2644 1 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  cdif 3537  ifcif 4036  {csn 4125   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cr 9814  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  4c4 10949  cz 11254  +crp 11708  ...cfz 12197  cfl 12453   mod cmo 12530  cprod 14474  cprime 15223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475  df-dvds 14822  df-prm 15224
This theorem is referenced by:  gausslemma2dlem5  24896
  Copyright terms: Public domain W3C validator