MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem4 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem4 24894
Description: Lemma 4 for gausslemma2d 24899. (Contributed by AV, 16-Jun-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem4 (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀,𝑘   𝑃,𝑘
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem gausslemma2dlem4
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
41, 2, 3gausslemma2dlem1 24891 . 2 (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
5 eldif 3550 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∈ {2}))
6 prm23ge5 15358 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))
7 eleq1 2676 . . . . . . . . 9 (𝑃 = 2 → (𝑃 ∈ {2} ↔ 2 ∈ {2}))
87notbid 307 . . . . . . . 8 (𝑃 = 2 → (¬ 𝑃 ∈ {2} ↔ ¬ 2 ∈ {2}))
9 2ex 10969 . . . . . . . . . . . 12 2 ∈ V
109snid 4155 . . . . . . . . . . 11 2 ∈ {2}
11102a1i 12 . . . . . . . . . 10 (𝑃 = 2 → (∏𝑘 ∈ (1...𝐻)(𝑅𝑘) ≠ (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) → 2 ∈ {2}))
1211necon1bd 2800 . . . . . . . . 9 (𝑃 = 2 → (¬ 2 ∈ {2} → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
1312a1dd 48 . . . . . . . 8 (𝑃 = 2 → (¬ 2 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
148, 13sylbid 229 . . . . . . 7 (𝑃 = 2 → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
15 gausslemma2d.m . . . . . . . . . 10 𝑀 = (⌊‘(𝑃 / 4))
16 3lt4 11074 . . . . . . . . . . . 12 3 < 4
17 breq1 4586 . . . . . . . . . . . 12 (𝑃 = 3 → (𝑃 < 4 ↔ 3 < 4))
1816, 17mpbiri 247 . . . . . . . . . . 11 (𝑃 = 3 → 𝑃 < 4)
19 3nn0 11187 . . . . . . . . . . . . 13 3 ∈ ℕ0
20 eleq1 2676 . . . . . . . . . . . . 13 (𝑃 = 3 → (𝑃 ∈ ℕ0 ↔ 3 ∈ ℕ0))
2119, 20mpbiri 247 . . . . . . . . . . . 12 (𝑃 = 3 → 𝑃 ∈ ℕ0)
22 4nn 11064 . . . . . . . . . . . 12 4 ∈ ℕ
23 divfl0 12487 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ) → (𝑃 < 4 ↔ (⌊‘(𝑃 / 4)) = 0))
2421, 22, 23sylancl 693 . . . . . . . . . . 11 (𝑃 = 3 → (𝑃 < 4 ↔ (⌊‘(𝑃 / 4)) = 0))
2518, 24mpbid 221 . . . . . . . . . 10 (𝑃 = 3 → (⌊‘(𝑃 / 4)) = 0)
2615, 25syl5eq 2656 . . . . . . . . 9 (𝑃 = 3 → 𝑀 = 0)
27 oveq2 6557 . . . . . . . . . . . . . . . 16 (𝑀 = 0 → (1...𝑀) = (1...0))
2827adantr 480 . . . . . . . . . . . . . . 15 ((𝑀 = 0 ∧ 𝜑) → (1...𝑀) = (1...0))
29 fz10 12233 . . . . . . . . . . . . . . 15 (1...0) = ∅
3028, 29syl6eq 2660 . . . . . . . . . . . . . 14 ((𝑀 = 0 ∧ 𝜑) → (1...𝑀) = ∅)
3130prodeq1d 14490 . . . . . . . . . . . . 13 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) = ∏𝑘 ∈ ∅ (𝑅𝑘))
32 prod0 14512 . . . . . . . . . . . . 13 𝑘 ∈ ∅ (𝑅𝑘) = 1
3331, 32syl6eq 2660 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) = 1)
34 oveq1 6556 . . . . . . . . . . . . . . . 16 (𝑀 = 0 → (𝑀 + 1) = (0 + 1))
3534adantr 480 . . . . . . . . . . . . . . 15 ((𝑀 = 0 ∧ 𝜑) → (𝑀 + 1) = (0 + 1))
36 0p1e1 11009 . . . . . . . . . . . . . . 15 (0 + 1) = 1
3735, 36syl6eq 2660 . . . . . . . . . . . . . 14 ((𝑀 = 0 ∧ 𝜑) → (𝑀 + 1) = 1)
3837oveq1d 6564 . . . . . . . . . . . . 13 ((𝑀 = 0 ∧ 𝜑) → ((𝑀 + 1)...𝐻) = (1...𝐻))
3938prodeq1d 14490 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
4033, 39oveq12d 6567 . . . . . . . . . . 11 ((𝑀 = 0 ∧ 𝜑) → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) = (1 · ∏𝑘 ∈ (1...𝐻)(𝑅𝑘)))
41 fzfid 12634 . . . . . . . . . . . . 13 ((𝑀 = 0 ∧ 𝜑) → (1...𝐻) ∈ Fin)
423a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...𝐻)) → 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))))
43 oveq1 6556 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑘 → (𝑥 · 2) = (𝑘 · 2))
4443breq1d 4593 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑘 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑘 · 2) < (𝑃 / 2)))
4543oveq2d 6565 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑘 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑘 · 2)))
4644, 43, 45ifbieq12d 4063 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
4746adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (1...𝐻)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
48 simpr 476 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...𝐻)) → 𝑘 ∈ (1...𝐻))
49 elfzelz 12213 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝐻) → 𝑘 ∈ ℤ)
5049zcnd 11359 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝐻) → 𝑘 ∈ ℂ)
51 2cnd 10970 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝐻) → 2 ∈ ℂ)
5250, 51mulcld 9939 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝐻) → (𝑘 · 2) ∈ ℂ)
5352adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑘 · 2) ∈ ℂ)
54 eldifi 3694 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
55 prmz 15227 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
5655zcnd 11359 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
571, 54, 563syl 18 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ ℂ)
5857adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...𝐻)) → 𝑃 ∈ ℂ)
5958, 53subcld 10271 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ ℂ)
6053, 59ifcld 4081 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...𝐻)) → if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))) ∈ ℂ)
6142, 47, 48, 60fvmptd 6197 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑅𝑘) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
6261, 60eqeltrd 2688 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑅𝑘) ∈ ℂ)
6362adantll 746 . . . . . . . . . . . . 13 (((𝑀 = 0 ∧ 𝜑) ∧ 𝑘 ∈ (1...𝐻)) → (𝑅𝑘) ∈ ℂ)
6441, 63fprodcl 14521 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) ∈ ℂ)
6564mulid2d 9937 . . . . . . . . . . 11 ((𝑀 = 0 ∧ 𝜑) → (1 · ∏𝑘 ∈ (1...𝐻)(𝑅𝑘)) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
6640, 65eqtr2d 2645 . . . . . . . . . 10 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
6766ex 449 . . . . . . . . 9 (𝑀 = 0 → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
6826, 67syl 17 . . . . . . . 8 (𝑃 = 3 → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
6968a1d 25 . . . . . . 7 (𝑃 = 3 → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
701, 15gausslemma2dlem0d 24884 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ0)
7170nn0red 11229 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
7271ltp1d 10833 . . . . . . . . . . . 12 (𝜑𝑀 < (𝑀 + 1))
73 fzdisj 12239 . . . . . . . . . . . 12 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
7472, 73syl 17 . . . . . . . . . . 11 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
7574adantl 481 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
76 eluzelre 11574 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 𝑃 ∈ ℝ)
77 4re 10974 . . . . . . . . . . . . . . . . . . . . 21 4 ∈ ℝ
7877a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 4 ∈ ℝ)
79 4ne0 10994 . . . . . . . . . . . . . . . . . . . . 21 4 ≠ 0
8079a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 4 ≠ 0)
8176, 78, 80redivcld 10732 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℤ‘5) → (𝑃 / 4) ∈ ℝ)
8281flcld 12461 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℤ‘5) → (⌊‘(𝑃 / 4)) ∈ ℤ)
83 nnrp 11718 . . . . . . . . . . . . . . . . . . . . 21 (4 ∈ ℕ → 4 ∈ ℝ+)
8422, 83ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 4 ∈ ℝ+
85 eluz2 11569 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ (ℤ‘5) ↔ (5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃))
86 4lt5 11077 . . . . . . . . . . . . . . . . . . . . . . 23 4 < 5
87 5re 10976 . . . . . . . . . . . . . . . . . . . . . . . . 25 5 ∈ ℝ
8887a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 5 ∈ ℝ)
89 zre 11258 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℤ → 𝑃 ∈ ℝ)
9089adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑃 ∈ ℝ)
91 ltleletr 10009 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 ∈ ℝ ∧ 5 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((4 < 5 ∧ 5 ≤ 𝑃) → 4 ≤ 𝑃))
9277, 88, 90, 91mp3an2i 1421 . . . . . . . . . . . . . . . . . . . . . . 23 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((4 < 5 ∧ 5 ≤ 𝑃) → 4 ≤ 𝑃))
9386, 92mpani 708 . . . . . . . . . . . . . . . . . . . . . 22 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (5 ≤ 𝑃 → 4 ≤ 𝑃))
94933impia 1253 . . . . . . . . . . . . . . . . . . . . 21 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃) → 4 ≤ 𝑃)
9585, 94sylbi 206 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 4 ≤ 𝑃)
96 divge1 11774 . . . . . . . . . . . . . . . . . . . 20 ((4 ∈ ℝ+𝑃 ∈ ℝ ∧ 4 ≤ 𝑃) → 1 ≤ (𝑃 / 4))
9784, 76, 95, 96mp3an2i 1421 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℤ‘5) → 1 ≤ (𝑃 / 4))
98 1zzd 11285 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 1 ∈ ℤ)
99 flge 12468 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 / 4) ∈ ℝ ∧ 1 ∈ ℤ) → (1 ≤ (𝑃 / 4) ↔ 1 ≤ (⌊‘(𝑃 / 4))))
10081, 98, 99syl2anc 691 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℤ‘5) → (1 ≤ (𝑃 / 4) ↔ 1 ≤ (⌊‘(𝑃 / 4))))
10197, 100mpbid 221 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℤ‘5) → 1 ≤ (⌊‘(𝑃 / 4)))
102 elnnz1 11280 . . . . . . . . . . . . . . . . . 18 ((⌊‘(𝑃 / 4)) ∈ ℕ ↔ ((⌊‘(𝑃 / 4)) ∈ ℤ ∧ 1 ≤ (⌊‘(𝑃 / 4))))
10382, 101, 102sylanbrc 695 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘5) → (⌊‘(𝑃 / 4)) ∈ ℕ)
104103adantl 481 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → (⌊‘(𝑃 / 4)) ∈ ℕ)
105 oddprm 15353 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
106105adantr 480 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → ((𝑃 − 1) / 2) ∈ ℕ)
107 prmuz2 15246 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
10854, 107syl 17 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘2))
109108adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → 𝑃 ∈ (ℤ‘2))
110 fldiv4lem1div2uz2 12499 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘2) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
111109, 110syl 17 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
112104, 106, 1113jca 1235 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
113112ex 449 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ (ℤ‘5) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))))
1141, 113syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑃 ∈ (ℤ‘5) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))))
115114impcom 445 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
1162oveq2i 6560 . . . . . . . . . . . . . 14 (1...𝐻) = (1...((𝑃 − 1) / 2))
11715, 116eleq12i 2681 . . . . . . . . . . . . 13 (𝑀 ∈ (1...𝐻) ↔ (⌊‘(𝑃 / 4)) ∈ (1...((𝑃 − 1) / 2)))
118 elfz1b 12279 . . . . . . . . . . . . 13 ((⌊‘(𝑃 / 4)) ∈ (1...((𝑃 − 1) / 2)) ↔ ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
119117, 118bitri 263 . . . . . . . . . . . 12 (𝑀 ∈ (1...𝐻) ↔ ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
120115, 119sylibr 223 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → 𝑀 ∈ (1...𝐻))
121 fzsplit 12238 . . . . . . . . . . 11 (𝑀 ∈ (1...𝐻) → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻)))
122120, 121syl 17 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻)))
123 fzfid 12634 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → (1...𝐻) ∈ Fin)
12462adantll 746 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘5) ∧ 𝜑) ∧ 𝑘 ∈ (1...𝐻)) → (𝑅𝑘) ∈ ℂ)
12575, 122, 123, 124fprodsplit 14535 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
126125ex 449 . . . . . . . 8 (𝑃 ∈ (ℤ‘5) → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
127126a1d 25 . . . . . . 7 (𝑃 ∈ (ℤ‘5) → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
12814, 69, 1273jaoi 1383 . . . . . 6 ((𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)) → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
1296, 128syl 17 . . . . 5 (𝑃 ∈ ℙ → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
130129imp 444 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 ∈ {2}) → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
1315, 130sylbi 206 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
1321, 131mpcom 37 . 2 (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
1334, 132eqtrd 2644 1 (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3o 1030  w3a 1031   = wceq 1475  wcel 1977  wne 2780  cdif 3537  cun 3538  cin 3539  c0 3874  ifcif 4036  {csn 4125   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  3c3 10948  4c4 10949  5c5 10950  0cn0 11169  cz 11254  cuz 11563  +crp 11708  ...cfz 12197  cfl 12453  !cfa 12922  cprod 14474  cprime 15223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ioo 12050  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475  df-dvds 14822  df-prm 15224
This theorem is referenced by:  gausslemma2dlem6  24897
  Copyright terms: Public domain W3C validator