MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcvg3 Structured version   Visualization version   GIF version

Theorem fsumcvg3 14307
Description: A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumcvg3.1 𝑍 = (ℤ𝑀)
fsumcvg3.2 (𝜑𝑀 ∈ ℤ)
fsumcvg3.3 (𝜑𝐴 ∈ Fin)
fsumcvg3.4 (𝜑𝐴𝑍)
fsumcvg3.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
fsumcvg3.6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumcvg3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑍(𝑘)

Proof of Theorem fsumcvg3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 sseq1 3589 . . . 4 (𝐴 = ∅ → (𝐴 ⊆ (𝑀...𝑛) ↔ ∅ ⊆ (𝑀...𝑛)))
21rexbidv 3034 . . 3 (𝐴 = ∅ → (∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛) ↔ ∃𝑛 ∈ (ℤ𝑀)∅ ⊆ (𝑀...𝑛)))
3 fsumcvg3.4 . . . . . . 7 (𝜑𝐴𝑍)
43adantr 480 . . . . . 6 ((𝜑𝐴 ≠ ∅) → 𝐴𝑍)
5 fsumcvg3.1 . . . . . 6 𝑍 = (ℤ𝑀)
64, 5syl6sseq 3614 . . . . 5 ((𝜑𝐴 ≠ ∅) → 𝐴 ⊆ (ℤ𝑀))
7 ltso 9997 . . . . . 6 < Or ℝ
8 fsumcvg3.3 . . . . . . . 8 (𝜑𝐴 ∈ Fin)
98adantr 480 . . . . . . 7 ((𝜑𝐴 ≠ ∅) → 𝐴 ∈ Fin)
10 simpr 476 . . . . . . 7 ((𝜑𝐴 ≠ ∅) → 𝐴 ≠ ∅)
11 uzssz 11583 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℤ
12 zssre 11261 . . . . . . . . . 10 ℤ ⊆ ℝ
1311, 12sstri 3577 . . . . . . . . 9 (ℤ𝑀) ⊆ ℝ
145, 13eqsstri 3598 . . . . . . . 8 𝑍 ⊆ ℝ
154, 14syl6ss 3580 . . . . . . 7 ((𝜑𝐴 ≠ ∅) → 𝐴 ⊆ ℝ)
169, 10, 153jca 1235 . . . . . 6 ((𝜑𝐴 ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℝ))
17 fisupcl 8258 . . . . . 6 (( < Or ℝ ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℝ)) → sup(𝐴, ℝ, < ) ∈ 𝐴)
187, 16, 17sylancr 694 . . . . 5 ((𝜑𝐴 ≠ ∅) → sup(𝐴, ℝ, < ) ∈ 𝐴)
196, 18sseldd 3569 . . . 4 ((𝜑𝐴 ≠ ∅) → sup(𝐴, ℝ, < ) ∈ (ℤ𝑀))
20 fimaxre2 10848 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑘 ∈ ℝ ∀𝑛𝐴 𝑛𝑘)
2115, 9, 20syl2anc 691 . . . . . . . . 9 ((𝜑𝐴 ≠ ∅) → ∃𝑘 ∈ ℝ ∀𝑛𝐴 𝑛𝑘)
2215, 10, 213jca 1235 . . . . . . . 8 ((𝜑𝐴 ≠ ∅) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑘 ∈ ℝ ∀𝑛𝐴 𝑛𝑘))
23 suprub 10863 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑘 ∈ ℝ ∀𝑛𝐴 𝑛𝑘) ∧ 𝑘𝐴) → 𝑘 ≤ sup(𝐴, ℝ, < ))
2422, 23sylan 487 . . . . . . 7 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → 𝑘 ≤ sup(𝐴, ℝ, < ))
256sselda 3568 . . . . . . . 8 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → 𝑘 ∈ (ℤ𝑀))
2611, 19sseldi 3566 . . . . . . . . 9 ((𝜑𝐴 ≠ ∅) → sup(𝐴, ℝ, < ) ∈ ℤ)
2726adantr 480 . . . . . . . 8 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → sup(𝐴, ℝ, < ) ∈ ℤ)
28 elfz5 12205 . . . . . . . 8 ((𝑘 ∈ (ℤ𝑀) ∧ sup(𝐴, ℝ, < ) ∈ ℤ) → (𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )) ↔ 𝑘 ≤ sup(𝐴, ℝ, < )))
2925, 27, 28syl2anc 691 . . . . . . 7 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → (𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )) ↔ 𝑘 ≤ sup(𝐴, ℝ, < )))
3024, 29mpbird 246 . . . . . 6 (((𝜑𝐴 ≠ ∅) ∧ 𝑘𝐴) → 𝑘 ∈ (𝑀...sup(𝐴, ℝ, < )))
3130ex 449 . . . . 5 ((𝜑𝐴 ≠ ∅) → (𝑘𝐴𝑘 ∈ (𝑀...sup(𝐴, ℝ, < ))))
3231ssrdv 3574 . . . 4 ((𝜑𝐴 ≠ ∅) → 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < )))
33 oveq2 6557 . . . . . 6 (𝑛 = sup(𝐴, ℝ, < ) → (𝑀...𝑛) = (𝑀...sup(𝐴, ℝ, < )))
3433sseq2d 3596 . . . . 5 (𝑛 = sup(𝐴, ℝ, < ) → (𝐴 ⊆ (𝑀...𝑛) ↔ 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))))
3534rspcev 3282 . . . 4 ((sup(𝐴, ℝ, < ) ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
3619, 32, 35syl2anc 691 . . 3 ((𝜑𝐴 ≠ ∅) → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
37 fsumcvg3.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
38 uzid 11578 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
3937, 38syl 17 . . . 4 (𝜑𝑀 ∈ (ℤ𝑀))
40 0ss 3924 . . . 4 ∅ ⊆ (𝑀...𝑀)
41 oveq2 6557 . . . . . 6 (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀))
4241sseq2d 3596 . . . . 5 (𝑛 = 𝑀 → (∅ ⊆ (𝑀...𝑛) ↔ ∅ ⊆ (𝑀...𝑀)))
4342rspcev 3282 . . . 4 ((𝑀 ∈ (ℤ𝑀) ∧ ∅ ⊆ (𝑀...𝑀)) → ∃𝑛 ∈ (ℤ𝑀)∅ ⊆ (𝑀...𝑛))
4439, 40, 43sylancl 693 . . 3 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∅ ⊆ (𝑀...𝑛))
452, 36, 44pm2.61ne 2867 . 2 (𝜑 → ∃𝑛 ∈ (ℤ𝑀)𝐴 ⊆ (𝑀...𝑛))
465eleq2i 2680 . . . . . 6 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
47 fsumcvg3.5 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
4846, 47sylan2br 492 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
4948adantlr 747 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
50 simprl 790 . . . 4 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝑛 ∈ (ℤ𝑀))
51 fsumcvg3.6 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
5251adantlr 747 . . . 4 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
53 simprr 792 . . . 4 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → 𝐴 ⊆ (𝑀...𝑛))
5449, 50, 52, 53fsumcvg2 14305 . . 3 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑛))
55 climrel 14071 . . . 4 Rel ⇝
5655releldmi 5283 . . 3 (seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑛) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
5754, 56syl 17 . 2 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝐴 ⊆ (𝑀...𝑛))) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
5845, 57rexlimddv 3017 1 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  wss 3540  c0 3874  ifcif 4036   class class class wbr 4583   Or wor 4958  dom cdm 5038  cfv 5804  (class class class)co 6549  Fincfn 7841  supcsup 8229  cc 9813  cr 9814  0cc0 9815   + caddc 9818   < clt 9953  cle 9954  cz 11254  cuz 11563  ...cfz 12197  seqcseq 12663  cli 14063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067
This theorem is referenced by:  isumless  14416  radcnv0  23974  fsumcvg4  29324
  Copyright terms: Public domain W3C validator