Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > climrel | Structured version Visualization version GIF version |
Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climrel | ⊢ Rel ⇝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clim 14067 | . 2 ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | |
2 | 1 | relopabi 5167 | 1 ⊢ Rel ⇝ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 class class class wbr 4583 Rel wrel 5043 ‘cfv 5804 (class class class)co 6549 ℂcc 9813 < clt 9953 − cmin 10145 ℤcz 11254 ℤ≥cuz 11563 ℝ+crp 11708 abscabs 13822 ⇝ cli 14063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-opab 4644 df-xp 5044 df-rel 5045 df-clim 14067 |
This theorem is referenced by: clim 14073 climcl 14078 climi 14089 climrlim2 14126 fclim 14132 climrecl 14162 climge0 14163 iserex 14235 caurcvg2 14256 caucvg 14257 iseralt 14263 fsumcvg3 14307 cvgcmpce 14391 climfsum 14393 climcnds 14422 trirecip 14434 ntrivcvgn0 14469 ovoliunlem1 23077 mbflimlem 23240 abelthlem5 23993 emcllem6 24527 lgamgulmlem4 24558 binomcxplemnn0 37570 binomcxplemnotnn0 37577 climf 38689 sumnnodd 38697 climf2 38733 climd 38739 clim2d 38740 ioodvbdlimc1lem2 38822 ioodvbdlimc2lem 38824 stirlinglem12 38978 fouriersw 39124 |
Copyright terms: Public domain | W3C validator |