Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem38 Structured version   Visualization version   GIF version

Theorem fourierdlem38 39038
 Description: The function 𝐹 is continuous on every interval induced by the partition 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem38.cn (𝜑𝐹 ∈ (dom 𝐹cn→ℂ))
fourierdlem38.p 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem38.m (𝜑𝑀 ∈ ℕ)
fourierdlem38.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem38.h 𝐻 = (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹))
fourierdlem38.ranq (𝜑 → ran 𝑄 = 𝐻)
Assertion
Ref Expression
fourierdlem38 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
Distinct variable groups:   𝑖,𝐹   𝑖,𝑀,𝑛,𝑝   𝑄,𝑖,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑛,𝑝)   𝐴(𝑖,𝑛,𝑝)   𝑃(𝑖,𝑛,𝑝)   𝑄(𝑛)   𝐹(𝑛,𝑝)   𝐻(𝑖,𝑛,𝑝)

Proof of Theorem fourierdlem38
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simplr 788 . . . . 5 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
2 simplll 794 . . . . . 6 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝜑)
3 ioossicc 12130 . . . . . . . . 9 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
4 pire 24014 . . . . . . . . . . . . 13 π ∈ ℝ
54renegcli 10221 . . . . . . . . . . . 12 -π ∈ ℝ
65rexri 9976 . . . . . . . . . . 11 -π ∈ ℝ*
76a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*)
84rexri 9976 . . . . . . . . . . 11 π ∈ ℝ*
98a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*)
10 fourierdlem38.p . . . . . . . . . . . 12 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
11 fourierdlem38.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
12 fourierdlem38.q . . . . . . . . . . . 12 (𝜑𝑄 ∈ (𝑃𝑀))
1310, 11, 12fourierdlem15 39015 . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
1413adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
15 simpr 476 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
167, 9, 14, 15fourierdlem8 39008 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
173, 16syl5ss 3579 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
1817sselda 3568 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ (-π[,]π))
1918adantr 480 . . . . . 6 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (-π[,]π))
20 simpr 476 . . . . . 6 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ dom 𝐹)
21 simpllr 795 . . . . . 6 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑖 ∈ (0..^𝑀))
22113ad2ant1 1075 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑀 ∈ ℕ)
23123ad2ant1 1075 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑄 ∈ (𝑃𝑀))
24 simp2 1055 . . . . . . . . . 10 ((𝜑𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (-π[,]π))
25 simp3 1056 . . . . . . . . . 10 ((𝜑𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ dom 𝐹)
2624, 25eldifd 3551 . . . . . . . . 9 ((𝜑𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ((-π[,]π) ∖ dom 𝐹))
27 elun2 3743 . . . . . . . . 9 (𝑥 ∈ ((-π[,]π) ∖ dom 𝐹) → 𝑥 ∈ (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)))
2826, 27syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)))
29 fourierdlem38.ranq . . . . . . . . . 10 (𝜑 → ran 𝑄 = 𝐻)
30 fourierdlem38.h . . . . . . . . . 10 𝐻 = (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹))
3129, 30syl6req 2661 . . . . . . . . 9 (𝜑 → (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)) = ran 𝑄)
32313ad2ant1 1075 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → (𝐴 ∪ ((-π[,]π) ∖ dom 𝐹)) = ran 𝑄)
3328, 32eleqtrd 2690 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑥 ∈ ran 𝑄)
3410, 22, 23, 33fourierdlem12 39012 . . . . . 6 (((𝜑𝑥 ∈ (-π[,]π) ∧ ¬ 𝑥 ∈ dom 𝐹) ∧ 𝑖 ∈ (0..^𝑀)) → ¬ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
352, 19, 20, 21, 34syl31anc 1321 . . . . 5 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 ∈ dom 𝐹) → ¬ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
361, 35condan 831 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ dom 𝐹)
3736ralrimiva 2949 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 ∈ dom 𝐹)
38 dfss3 3558 . . 3 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))𝑥 ∈ dom 𝐹)
3937, 38sylibr 223 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
40 fourierdlem38.cn . . 3 (𝜑𝐹 ∈ (dom 𝐹cn→ℂ))
4140adantr 480 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹 ∈ (dom 𝐹cn→ℂ))
42 rescncf 22508 . 2 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 → (𝐹 ∈ (dom 𝐹cn→ℂ) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)))
4339, 41, 42sylc 63 1 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900   ∖ cdif 3537   ∪ cun 3538   ⊆ wss 3540   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ran crn 5039   ↾ cres 5040  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818  ℝ*cxr 9952   < clt 9953  -cneg 10146  ℕcn 10897  (,)cioo 12046  [,]cicc 12049  ...cfz 12197  ..^cfzo 12334  πcpi 14636  –cn→ccncf 22487 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437 This theorem is referenced by:  fourierdlem102  39101  fourierdlem114  39113
 Copyright terms: Public domain W3C validator