Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem37 Structured version   Visualization version   GIF version

Theorem fourierdlem37 39037
Description: 𝐼 is a function that maps any real point to the point that in the partition that immediately precedes the corresponding periodic point in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem37.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem37.m (𝜑𝑀 ∈ ℕ)
fourierdlem37.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem37.t 𝑇 = (𝐵𝐴)
fourierdlem37.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem37.l 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
fourierdlem37.i 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ))
Assertion
Ref Expression
fourierdlem37 (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})))
Distinct variable groups:   𝐴,𝑚,𝑝   𝑥,𝐴,𝑦   𝐵,𝑚,𝑝   𝑥,𝐵,𝑦   𝑖,𝐸   𝑦,𝐸   𝑖,𝐿   𝑖,𝑀,𝑚,𝑝   𝑥,𝑀,𝑖   𝑄,𝑖,𝑝   𝑥,𝑇   𝜑,𝑖,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑥,𝑦,𝑖,𝑚,𝑝)   𝑄(𝑥,𝑦,𝑚)   𝑇(𝑦,𝑖,𝑚,𝑝)   𝐸(𝑥,𝑚,𝑝)   𝐼(𝑥,𝑦,𝑖,𝑚,𝑝)   𝐿(𝑥,𝑦,𝑚,𝑝)   𝑀(𝑦)

Proof of Theorem fourierdlem37
StepHypRef Expression
1 ssrab2 3650 . . . 4 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ (0..^𝑀)
2 ltso 9997 . . . . . 6 < Or ℝ
32a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ) → < Or ℝ)
4 fzfi 12633 . . . . . . 7 (0...𝑀) ∈ Fin
5 fzossfz 12357 . . . . . . . 8 (0..^𝑀) ⊆ (0...𝑀)
61, 5sstri 3577 . . . . . . 7 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ (0...𝑀)
7 ssfi 8065 . . . . . . 7 (((0...𝑀) ∈ Fin ∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ (0...𝑀)) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ∈ Fin)
84, 6, 7mp2an 704 . . . . . 6 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ∈ Fin
98a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ∈ Fin)
10 0zd 11266 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
11 fourierdlem37.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
1211nnzd 11357 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
1311nngt0d 10941 . . . . . . . . 9 (𝜑 → 0 < 𝑀)
14 fzolb 12345 . . . . . . . . 9 (0 ∈ (0..^𝑀) ↔ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
1510, 12, 13, 14syl3anbrc 1239 . . . . . . . 8 (𝜑 → 0 ∈ (0..^𝑀))
1615adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 0 ∈ (0..^𝑀))
17 fourierdlem37.q . . . . . . . . . . . . . . . 16 (𝜑𝑄 ∈ (𝑃𝑀))
18 fourierdlem37.p . . . . . . . . . . . . . . . . . 18 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
1918fourierdlem2 39002 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2011, 19syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2117, 20mpbid 221 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2221simprd 478 . . . . . . . . . . . . . 14 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
2322simplld 787 . . . . . . . . . . . . 13 (𝜑 → (𝑄‘0) = 𝐴)
2418, 11, 17fourierdlem11 39011 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
2524simp1d 1066 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ)
2623, 25eqeltrd 2688 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) ∈ ℝ)
2726, 23eqled 10019 . . . . . . . . . . 11 (𝜑 → (𝑄‘0) ≤ 𝐴)
2827ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝐸𝑥) = 𝐵) → (𝑄‘0) ≤ 𝐴)
29 iftrue 4042 . . . . . . . . . . . 12 ((𝐸𝑥) = 𝐵 → if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)) = 𝐴)
3029eqcomd 2616 . . . . . . . . . . 11 ((𝐸𝑥) = 𝐵𝐴 = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
3130adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝐸𝑥) = 𝐵) → 𝐴 = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
3228, 31breqtrd 4609 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (𝐸𝑥) = 𝐵) → (𝑄‘0) ≤ if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
3326adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) ∈ ℝ)
3425adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
3534rexrd 9968 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → 𝐴 ∈ ℝ*)
3624simp2d 1067 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
3736adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
38 iocssre 12124 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
3935, 37, 38syl2anc 691 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
4024simp3d 1068 . . . . . . . . . . . . . . 15 (𝜑𝐴 < 𝐵)
41 fourierdlem37.t . . . . . . . . . . . . . . 15 𝑇 = (𝐵𝐴)
42 fourierdlem37.e . . . . . . . . . . . . . . 15 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
4325, 36, 40, 41, 42fourierdlem4 39004 . . . . . . . . . . . . . 14 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
4443fnvinran 38196 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝐸𝑥) ∈ (𝐴(,]𝐵))
4539, 44sseldd 3569 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝐸𝑥) ∈ ℝ)
4623adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) = 𝐴)
47 elioc2 12107 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐸𝑥) ∈ (𝐴(,]𝐵) ↔ ((𝐸𝑥) ∈ ℝ ∧ 𝐴 < (𝐸𝑥) ∧ (𝐸𝑥) ≤ 𝐵)))
4835, 37, 47syl2anc 691 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → ((𝐸𝑥) ∈ (𝐴(,]𝐵) ↔ ((𝐸𝑥) ∈ ℝ ∧ 𝐴 < (𝐸𝑥) ∧ (𝐸𝑥) ≤ 𝐵)))
4944, 48mpbid 221 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((𝐸𝑥) ∈ ℝ ∧ 𝐴 < (𝐸𝑥) ∧ (𝐸𝑥) ≤ 𝐵))
5049simp2d 1067 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → 𝐴 < (𝐸𝑥))
5146, 50eqbrtrd 4605 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) < (𝐸𝑥))
5233, 45, 51ltled 10064 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) ≤ (𝐸𝑥))
5352adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝐸𝑥) = 𝐵) → (𝑄‘0) ≤ (𝐸𝑥))
54 iffalse 4045 . . . . . . . . . . . 12 (¬ (𝐸𝑥) = 𝐵 → if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)) = (𝐸𝑥))
5554eqcomd 2616 . . . . . . . . . . 11 (¬ (𝐸𝑥) = 𝐵 → (𝐸𝑥) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
5655adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝐸𝑥) = 𝐵) → (𝐸𝑥) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
5753, 56breqtrd 4609 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝐸𝑥) = 𝐵) → (𝑄‘0) ≤ if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
5832, 57pm2.61dan 828 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) ≤ if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
59 fourierdlem37.l . . . . . . . . . 10 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
6059a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)))
61 eqeq1 2614 . . . . . . . . . . 11 (𝑦 = (𝐸𝑥) → (𝑦 = 𝐵 ↔ (𝐸𝑥) = 𝐵))
62 id 22 . . . . . . . . . . 11 (𝑦 = (𝐸𝑥) → 𝑦 = (𝐸𝑥))
6361, 62ifbieq2d 4061 . . . . . . . . . 10 (𝑦 = (𝐸𝑥) → if(𝑦 = 𝐵, 𝐴, 𝑦) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
6463adantl 481 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑦 = (𝐸𝑥)) → if(𝑦 = 𝐵, 𝐴, 𝑦) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
6534, 45ifcld 4081 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)) ∈ ℝ)
6660, 64, 44, 65fvmptd 6197 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐿‘(𝐸𝑥)) = if((𝐸𝑥) = 𝐵, 𝐴, (𝐸𝑥)))
6758, 66breqtrrd 4611 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑄‘0) ≤ (𝐿‘(𝐸𝑥)))
68 fveq2 6103 . . . . . . . . 9 (𝑖 = 0 → (𝑄𝑖) = (𝑄‘0))
6968breq1d 4593 . . . . . . . 8 (𝑖 = 0 → ((𝑄𝑖) ≤ (𝐿‘(𝐸𝑥)) ↔ (𝑄‘0) ≤ (𝐿‘(𝐸𝑥))))
7069elrab 3331 . . . . . . 7 (0 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ↔ (0 ∈ (0..^𝑀) ∧ (𝑄‘0) ≤ (𝐿‘(𝐸𝑥))))
7116, 67, 70sylanbrc 695 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})
72 ne0i 3880 . . . . . 6 (0 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ≠ ∅)
7371, 72syl 17 . . . . 5 ((𝜑𝑥 ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ≠ ∅)
74 fzssz 12214 . . . . . . . . 9 (0...𝑀) ⊆ ℤ
755, 74sstri 3577 . . . . . . . 8 (0..^𝑀) ⊆ ℤ
76 zssre 11261 . . . . . . . 8 ℤ ⊆ ℝ
7775, 76sstri 3577 . . . . . . 7 (0..^𝑀) ⊆ ℝ
781, 77sstri 3577 . . . . . 6 {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ ℝ
7978a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ ℝ)
80 fisupcl 8258 . . . . 5 (( < Or ℝ ∧ ({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ∈ Fin ∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ≠ ∅ ∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))} ⊆ ℝ)) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})
813, 9, 73, 79, 80syl13anc 1320 . . . 4 ((𝜑𝑥 ∈ ℝ) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})
821, 81sseldi 3566 . . 3 ((𝜑𝑥 ∈ ℝ) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ (0..^𝑀))
83 fourierdlem37.i . . 3 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ))
8482, 83fmptd 6292 . 2 (𝜑𝐼:ℝ⟶(0..^𝑀))
8581ex 449 . 2 (𝜑 → (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}))
8684, 85jca 553 1 (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐿‘(𝐸𝑥))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  {crab 2900  wss 3540  c0 3874  ifcif 4036   class class class wbr 4583  cmpt 4643   Or wor 4958  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Fincfn 7841  supcsup 8229  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  *cxr 9952   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  cz 11254  (,]cioc 12047  ...cfz 12197  ..^cfzo 12334  cfl 12453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ioc 12051  df-fz 12198  df-fzo 12335  df-fl 12455
This theorem is referenced by:  fourierdlem79  39078  fourierdlem89  39088  fourierdlem90  39089  fourierdlem91  39090
  Copyright terms: Public domain W3C validator