Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd4lem4 Structured version   Visualization version   GIF version

Theorem faclbnd4lem4 12945
 Description: Lemma for faclbnd4 12946. Prove the 0 < 𝑁 case by induction on 𝐾. (Contributed by NM, 19-Dec-2005.)
Assertion
Ref Expression
faclbnd4lem4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))

Proof of Theorem faclbnd4lem4
Dummy variables 𝑗 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6556 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑛𝑗) = (𝑚𝑗))
2 oveq2 6557 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑀𝑛) = (𝑀𝑚))
31, 2oveq12d 6567 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝑛𝑗) · (𝑀𝑛)) = ((𝑚𝑗) · (𝑀𝑚)))
4 fveq2 6103 . . . . . . . . . . 11 (𝑛 = 𝑚 → (!‘𝑛) = (!‘𝑚))
54oveq2d 6565 . . . . . . . . . 10 (𝑛 = 𝑚 → (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)) = (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)))
63, 5breq12d 4596 . . . . . . . . 9 (𝑛 = 𝑚 → (((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)) ↔ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚))))
76cbvralv 3147 . . . . . . . 8 (∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)) ↔ ∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)))
8 nnre 10904 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
9 1re 9918 . . . . . . . . . . . . . 14 1 ∈ ℝ
10 lelttric 10023 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑛 ≤ 1 ∨ 1 < 𝑛))
118, 9, 10sylancl 693 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 ≤ 1 ∨ 1 < 𝑛))
1211ancli 572 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 ∈ ℕ ∧ (𝑛 ≤ 1 ∨ 1 < 𝑛)))
13 andi 907 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝑛 ≤ 1 ∨ 1 < 𝑛)) ↔ ((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) ∨ (𝑛 ∈ ℕ ∧ 1 < 𝑛)))
1412, 13sylib 207 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) ∨ (𝑛 ∈ ℕ ∧ 1 < 𝑛)))
15 nnge1 10923 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 1 ≤ 𝑛)
16 letri3 10002 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑛 = 1 ↔ (𝑛 ≤ 1 ∧ 1 ≤ 𝑛)))
178, 9, 16sylancl 693 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (𝑛 = 1 ↔ (𝑛 ≤ 1 ∧ 1 ≤ 𝑛)))
1817biimpar 501 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ (𝑛 ≤ 1 ∧ 1 ≤ 𝑛)) → 𝑛 = 1)
1918anassrs 678 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) ∧ 1 ≤ 𝑛) → 𝑛 = 1)
2015, 19mpidan 701 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) → 𝑛 = 1)
21 oveq1 6556 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (𝑛 − 1) = (1 − 1))
22 1m1e0 10966 . . . . . . . . . . . . . . . 16 (1 − 1) = 0
2321, 22syl6eq 2660 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝑛 − 1) = 0)
2420, 23syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) → (𝑛 − 1) = 0)
25 faclbnd4lem3 12944 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ (𝑛 − 1) = 0) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1))))
2624, 25sylan2 490 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ (𝑛 ∈ ℕ ∧ 𝑛 ≤ 1)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1))))
2726a1d 25 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ (𝑛 ∈ ℕ ∧ 𝑛 ≤ 1)) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
28 1nn 10908 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
29 nnsub 10936 . . . . . . . . . . . . . . . 16 ((1 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (1 < 𝑛 ↔ (𝑛 − 1) ∈ ℕ))
3028, 29mpan 702 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (1 < 𝑛 ↔ (𝑛 − 1) ∈ ℕ))
3130biimpa 500 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 1 < 𝑛) → (𝑛 − 1) ∈ ℕ)
32 oveq1 6556 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑛 − 1) → (𝑚𝑗) = ((𝑛 − 1)↑𝑗))
33 oveq2 6557 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑛 − 1) → (𝑀𝑚) = (𝑀↑(𝑛 − 1)))
3432, 33oveq12d 6567 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑛 − 1) → ((𝑚𝑗) · (𝑀𝑚)) = (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))))
35 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑛 − 1) → (!‘𝑚) = (!‘(𝑛 − 1)))
3635oveq2d 6565 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑛 − 1) → (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) = (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1))))
3734, 36breq12d 4596 . . . . . . . . . . . . . . 15 (𝑚 = (𝑛 − 1) → (((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) ↔ (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
3837rspcv 3278 . . . . . . . . . . . . . 14 ((𝑛 − 1) ∈ ℕ → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
3931, 38syl 17 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 1 < 𝑛) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
4039adantl 481 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ (𝑛 ∈ ℕ ∧ 1 < 𝑛)) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
4127, 40jaodan 822 . . . . . . . . . . 11 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ ((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) ∨ (𝑛 ∈ ℕ ∧ 1 < 𝑛))) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
4214, 41sylan2 490 . . . . . . . . . 10 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
43 faclbnd4lem2 12943 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0𝑛 ∈ ℕ) → ((((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1))) → ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
44433expa 1257 . . . . . . . . . 10 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ((((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1))) → ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
4542, 44syld 46 . . . . . . . . 9 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
4645ralrimdva 2952 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
477, 46syl5bi 231 . . . . . . 7 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) → (∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)) → ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
4847expcom 450 . . . . . 6 (𝑗 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)) → ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛)))))
4948a2d 29 . . . . 5 (𝑗 ∈ ℕ0 → ((𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛))) → (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛)))))
50 nnnn0 11176 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
51 faclbnd3 12941 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑀𝑛) ≤ ((𝑀𝑀) · (!‘𝑛)))
5250, 51sylan2 490 . . . . . . 7 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → (𝑀𝑛) ≤ ((𝑀𝑀) · (!‘𝑛)))
53 nncn 10905 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
5453exp0d 12864 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛↑0) = 1)
5554oveq1d 6564 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑛↑0) · (𝑀𝑛)) = (1 · (𝑀𝑛)))
5655adantl 481 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛↑0) · (𝑀𝑛)) = (1 · (𝑀𝑛)))
57 nn0cn 11179 . . . . . . . . . 10 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
58 expcl 12740 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ ℂ)
5957, 50, 58syl2an 493 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → (𝑀𝑛) ∈ ℂ)
6059mulid2d 9937 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → (1 · (𝑀𝑛)) = (𝑀𝑛))
6156, 60eqtrd 2644 . . . . . . 7 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛↑0) · (𝑀𝑛)) = (𝑀𝑛))
62 sq0 12817 . . . . . . . . . . . . . 14 (0↑2) = 0
6362oveq2i 6560 . . . . . . . . . . . . 13 (2↑(0↑2)) = (2↑0)
64 2cn 10968 . . . . . . . . . . . . . 14 2 ∈ ℂ
65 exp0 12726 . . . . . . . . . . . . . 14 (2 ∈ ℂ → (2↑0) = 1)
6664, 65ax-mp 5 . . . . . . . . . . . . 13 (2↑0) = 1
6763, 66eqtri 2632 . . . . . . . . . . . 12 (2↑(0↑2)) = 1
6867a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → (2↑(0↑2)) = 1)
6957addid1d 10115 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0 → (𝑀 + 0) = 𝑀)
7069oveq2d 6565 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → (𝑀↑(𝑀 + 0)) = (𝑀𝑀))
7168, 70oveq12d 6567 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → ((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) = (1 · (𝑀𝑀)))
72 expcl 12740 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑀𝑀) ∈ ℂ)
7357, 72mpancom 700 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → (𝑀𝑀) ∈ ℂ)
7473mulid2d 9937 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (1 · (𝑀𝑀)) = (𝑀𝑀))
7571, 74eqtrd 2644 . . . . . . . . 9 (𝑀 ∈ ℕ0 → ((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) = (𝑀𝑀))
7675oveq1d 6564 . . . . . . . 8 (𝑀 ∈ ℕ0 → (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)) = ((𝑀𝑀) · (!‘𝑛)))
7776adantr 480 . . . . . . 7 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)) = ((𝑀𝑀) · (!‘𝑛)))
7852, 61, 773brtr4d 4615 . . . . . 6 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛↑0) · (𝑀𝑛)) ≤ (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)))
7978ralrimiva 2949 . . . . 5 (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛↑0) · (𝑀𝑛)) ≤ (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)))
80 oveq2 6557 . . . . . . . . 9 (𝑚 = 0 → (𝑛𝑚) = (𝑛↑0))
8180oveq1d 6564 . . . . . . . 8 (𝑚 = 0 → ((𝑛𝑚) · (𝑀𝑛)) = ((𝑛↑0) · (𝑀𝑛)))
82 oveq1 6556 . . . . . . . . . . 11 (𝑚 = 0 → (𝑚↑2) = (0↑2))
8382oveq2d 6565 . . . . . . . . . 10 (𝑚 = 0 → (2↑(𝑚↑2)) = (2↑(0↑2)))
84 oveq2 6557 . . . . . . . . . . 11 (𝑚 = 0 → (𝑀 + 𝑚) = (𝑀 + 0))
8584oveq2d 6565 . . . . . . . . . 10 (𝑚 = 0 → (𝑀↑(𝑀 + 𝑚)) = (𝑀↑(𝑀 + 0)))
8683, 85oveq12d 6567 . . . . . . . . 9 (𝑚 = 0 → ((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) = ((2↑(0↑2)) · (𝑀↑(𝑀 + 0))))
8786oveq1d 6564 . . . . . . . 8 (𝑚 = 0 → (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) = (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)))
8881, 87breq12d 4596 . . . . . . 7 (𝑚 = 0 → (((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ((𝑛↑0) · (𝑀𝑛)) ≤ (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛))))
8988ralbidv 2969 . . . . . 6 (𝑚 = 0 → (∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ∀𝑛 ∈ ℕ ((𝑛↑0) · (𝑀𝑛)) ≤ (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛))))
9089imbi2d 329 . . . . 5 (𝑚 = 0 → ((𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛))) ↔ (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛↑0) · (𝑀𝑛)) ≤ (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)))))
91 oveq2 6557 . . . . . . . . 9 (𝑚 = 𝑗 → (𝑛𝑚) = (𝑛𝑗))
9291oveq1d 6564 . . . . . . . 8 (𝑚 = 𝑗 → ((𝑛𝑚) · (𝑀𝑛)) = ((𝑛𝑗) · (𝑀𝑛)))
93 oveq1 6556 . . . . . . . . . . 11 (𝑚 = 𝑗 → (𝑚↑2) = (𝑗↑2))
9493oveq2d 6565 . . . . . . . . . 10 (𝑚 = 𝑗 → (2↑(𝑚↑2)) = (2↑(𝑗↑2)))
95 oveq2 6557 . . . . . . . . . . 11 (𝑚 = 𝑗 → (𝑀 + 𝑚) = (𝑀 + 𝑗))
9695oveq2d 6565 . . . . . . . . . 10 (𝑚 = 𝑗 → (𝑀↑(𝑀 + 𝑚)) = (𝑀↑(𝑀 + 𝑗)))
9794, 96oveq12d 6567 . . . . . . . . 9 (𝑚 = 𝑗 → ((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) = ((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))))
9897oveq1d 6564 . . . . . . . 8 (𝑚 = 𝑗 → (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) = (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)))
9992, 98breq12d 4596 . . . . . . 7 (𝑚 = 𝑗 → (((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛))))
10099ralbidv 2969 . . . . . 6 (𝑚 = 𝑗 → (∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛))))
101100imbi2d 329 . . . . 5 (𝑚 = 𝑗 → ((𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛))) ↔ (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)))))
102 oveq2 6557 . . . . . . . . 9 (𝑚 = (𝑗 + 1) → (𝑛𝑚) = (𝑛↑(𝑗 + 1)))
103102oveq1d 6564 . . . . . . . 8 (𝑚 = (𝑗 + 1) → ((𝑛𝑚) · (𝑀𝑛)) = ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)))
104 oveq1 6556 . . . . . . . . . . 11 (𝑚 = (𝑗 + 1) → (𝑚↑2) = ((𝑗 + 1)↑2))
105104oveq2d 6565 . . . . . . . . . 10 (𝑚 = (𝑗 + 1) → (2↑(𝑚↑2)) = (2↑((𝑗 + 1)↑2)))
106 oveq2 6557 . . . . . . . . . . 11 (𝑚 = (𝑗 + 1) → (𝑀 + 𝑚) = (𝑀 + (𝑗 + 1)))
107106oveq2d 6565 . . . . . . . . . 10 (𝑚 = (𝑗 + 1) → (𝑀↑(𝑀 + 𝑚)) = (𝑀↑(𝑀 + (𝑗 + 1))))
108105, 107oveq12d 6567 . . . . . . . . 9 (𝑚 = (𝑗 + 1) → ((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) = ((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))))
109108oveq1d 6564 . . . . . . . 8 (𝑚 = (𝑗 + 1) → (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) = (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛)))
110103, 109breq12d 4596 . . . . . . 7 (𝑚 = (𝑗 + 1) → (((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
111110ralbidv 2969 . . . . . 6 (𝑚 = (𝑗 + 1) → (∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
112111imbi2d 329 . . . . 5 (𝑚 = (𝑗 + 1) → ((𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛))) ↔ (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛)))))
113 oveq2 6557 . . . . . . . . 9 (𝑚 = 𝐾 → (𝑛𝑚) = (𝑛𝐾))
114113oveq1d 6564 . . . . . . . 8 (𝑚 = 𝐾 → ((𝑛𝑚) · (𝑀𝑛)) = ((𝑛𝐾) · (𝑀𝑛)))
115 oveq1 6556 . . . . . . . . . . 11 (𝑚 = 𝐾 → (𝑚↑2) = (𝐾↑2))
116115oveq2d 6565 . . . . . . . . . 10 (𝑚 = 𝐾 → (2↑(𝑚↑2)) = (2↑(𝐾↑2)))
117 oveq2 6557 . . . . . . . . . . 11 (𝑚 = 𝐾 → (𝑀 + 𝑚) = (𝑀 + 𝐾))
118117oveq2d 6565 . . . . . . . . . 10 (𝑚 = 𝐾 → (𝑀↑(𝑀 + 𝑚)) = (𝑀↑(𝑀 + 𝐾)))
119116, 118oveq12d 6567 . . . . . . . . 9 (𝑚 = 𝐾 → ((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) = ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
120119oveq1d 6564 . . . . . . . 8 (𝑚 = 𝐾 → (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) = (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛)))
121114, 120breq12d 4596 . . . . . . 7 (𝑚 = 𝐾 → (((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛))))
122121ralbidv 2969 . . . . . 6 (𝑚 = 𝐾 → (∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ∀𝑛 ∈ ℕ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛))))
123122imbi2d 329 . . . . 5 (𝑚 = 𝐾 → ((𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛))) ↔ (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛)))))
12449, 79, 90, 101, 112, 123nn0indALT 11349 . . . 4 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛))))
125124imp 444 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ∀𝑛 ∈ ℕ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛)))
126 oveq1 6556 . . . . . 6 (𝑛 = 𝑁 → (𝑛𝐾) = (𝑁𝐾))
127 oveq2 6557 . . . . . 6 (𝑛 = 𝑁 → (𝑀𝑛) = (𝑀𝑁))
128126, 127oveq12d 6567 . . . . 5 (𝑛 = 𝑁 → ((𝑛𝐾) · (𝑀𝑛)) = ((𝑁𝐾) · (𝑀𝑁)))
129 fveq2 6103 . . . . . 6 (𝑛 = 𝑁 → (!‘𝑛) = (!‘𝑁))
130129oveq2d 6565 . . . . 5 (𝑛 = 𝑁 → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛)) = (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
131128, 130breq12d 4596 . . . 4 (𝑛 = 𝑁 → (((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛)) ↔ ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
132131rspcva 3280 . . 3 ((𝑁 ∈ ℕ ∧ ∀𝑛 ∈ ℕ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛))) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
133125, 132sylan2 490 . 2 ((𝑁 ∈ ℕ ∧ (𝐾 ∈ ℕ0𝑀 ∈ ℕ0)) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
1341333impb 1252 1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953   ≤ cle 9954   − cmin 10145  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ↑cexp 12722  !cfa 12922 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-fac 12923 This theorem is referenced by:  faclbnd4  12946
 Copyright terms: Public domain W3C validator