MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd4lem2 Structured version   Visualization version   GIF version

Theorem faclbnd4lem2 12943
Description: Lemma for faclbnd4 12946. Use the weak deduction theorem to convert the hypotheses of faclbnd4lem1 12942 to antecedents. (Contributed by NM, 23-Dec-2005.)
Assertion
Ref Expression
faclbnd4lem2 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((((𝑁 − 1)↑𝐾) · (𝑀↑(𝑁 − 1))) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘(𝑁 − 1))) → ((𝑁↑(𝐾 + 1)) · (𝑀𝑁)) ≤ (((2↑((𝐾 + 1)↑2)) · (𝑀↑(𝑀 + (𝐾 + 1)))) · (!‘𝑁))))

Proof of Theorem faclbnd4lem2
StepHypRef Expression
1 oveq1 6556 . . . . 5 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (𝑀↑(𝑁 − 1)) = (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1)))
21oveq2d 6565 . . . 4 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (((𝑁 − 1)↑𝐾) · (𝑀↑(𝑁 − 1))) = (((𝑁 − 1)↑𝐾) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))))
3 id 22 . . . . . . 7 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → 𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1))
4 oveq1 6556 . . . . . . 7 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (𝑀 + 𝐾) = (if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾))
53, 4oveq12d 6567 . . . . . 6 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (𝑀↑(𝑀 + 𝐾)) = (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾)))
65oveq2d 6565 . . . . 5 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) = ((2↑(𝐾↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾))))
76oveq1d 6564 . . . 4 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘(𝑁 − 1))) = (((2↑(𝐾↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾))) · (!‘(𝑁 − 1))))
82, 7breq12d 4596 . . 3 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → ((((𝑁 − 1)↑𝐾) · (𝑀↑(𝑁 − 1))) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘(𝑁 − 1))) ↔ (((𝑁 − 1)↑𝐾) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))) ≤ (((2↑(𝐾↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾))) · (!‘(𝑁 − 1)))))
9 oveq1 6556 . . . . 5 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (𝑀𝑁) = (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁))
109oveq2d 6565 . . . 4 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → ((𝑁↑(𝐾 + 1)) · (𝑀𝑁)) = ((𝑁↑(𝐾 + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)))
11 oveq1 6556 . . . . . . 7 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (𝑀 + (𝐾 + 1)) = (if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1)))
123, 11oveq12d 6567 . . . . . 6 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (𝑀↑(𝑀 + (𝐾 + 1))) = (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1))))
1312oveq2d 6565 . . . . 5 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → ((2↑((𝐾 + 1)↑2)) · (𝑀↑(𝑀 + (𝐾 + 1)))) = ((2↑((𝐾 + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1)))))
1413oveq1d 6564 . . . 4 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (((2↑((𝐾 + 1)↑2)) · (𝑀↑(𝑀 + (𝐾 + 1)))) · (!‘𝑁)) = (((2↑((𝐾 + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1)))) · (!‘𝑁)))
1510, 14breq12d 4596 . . 3 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (((𝑁↑(𝐾 + 1)) · (𝑀𝑁)) ≤ (((2↑((𝐾 + 1)↑2)) · (𝑀↑(𝑀 + (𝐾 + 1)))) · (!‘𝑁)) ↔ ((𝑁↑(𝐾 + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)) ≤ (((2↑((𝐾 + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1)))) · (!‘𝑁))))
168, 15imbi12d 333 . 2 (𝑀 = if(𝑀 ∈ ℕ0, 𝑀, 1) → (((((𝑁 − 1)↑𝐾) · (𝑀↑(𝑁 − 1))) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘(𝑁 − 1))) → ((𝑁↑(𝐾 + 1)) · (𝑀𝑁)) ≤ (((2↑((𝐾 + 1)↑2)) · (𝑀↑(𝑀 + (𝐾 + 1)))) · (!‘𝑁))) ↔ ((((𝑁 − 1)↑𝐾) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))) ≤ (((2↑(𝐾↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾))) · (!‘(𝑁 − 1))) → ((𝑁↑(𝐾 + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)) ≤ (((2↑((𝐾 + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1)))) · (!‘𝑁)))))
17 oveq2 6557 . . . . 5 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → ((𝑁 − 1)↑𝐾) = ((𝑁 − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)))
1817oveq1d 6564 . . . 4 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (((𝑁 − 1)↑𝐾) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))) = (((𝑁 − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))))
19 oveq1 6556 . . . . . . 7 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (𝐾↑2) = (if(𝐾 ∈ ℕ0, 𝐾, 1)↑2))
2019oveq2d 6565 . . . . . 6 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (2↑(𝐾↑2)) = (2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)))
21 oveq2 6557 . . . . . . 7 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾) = (if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))
2221oveq2d 6565 . . . . . 6 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾)) = (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1))))
2320, 22oveq12d 6567 . . . . 5 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → ((2↑(𝐾↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾))) = ((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))))
2423oveq1d 6564 . . . 4 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (((2↑(𝐾↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾))) · (!‘(𝑁 − 1))) = (((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))) · (!‘(𝑁 − 1))))
2518, 24breq12d 4596 . . 3 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → ((((𝑁 − 1)↑𝐾) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))) ≤ (((2↑(𝐾↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾))) · (!‘(𝑁 − 1))) ↔ (((𝑁 − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))) ≤ (((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))) · (!‘(𝑁 − 1)))))
26 oveq1 6556 . . . . . 6 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (𝐾 + 1) = (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1))
2726oveq2d 6565 . . . . 5 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (𝑁↑(𝐾 + 1)) = (𝑁↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))
2827oveq1d 6564 . . . 4 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → ((𝑁↑(𝐾 + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)) = ((𝑁↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)))
2926oveq1d 6564 . . . . . . 7 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → ((𝐾 + 1)↑2) = ((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2))
3029oveq2d 6565 . . . . . 6 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (2↑((𝐾 + 1)↑2)) = (2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)))
3126oveq2d 6565 . . . . . . 7 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1)) = (if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))
3231oveq2d 6565 . . . . . 6 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1))) = (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1))))
3330, 32oveq12d 6567 . . . . 5 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → ((2↑((𝐾 + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1)))) = ((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))))
3433oveq1d 6564 . . . 4 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (((2↑((𝐾 + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1)))) · (!‘𝑁)) = (((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))) · (!‘𝑁)))
3528, 34breq12d 4596 . . 3 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (((𝑁↑(𝐾 + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)) ≤ (((2↑((𝐾 + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1)))) · (!‘𝑁)) ↔ ((𝑁↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)) ≤ (((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))) · (!‘𝑁))))
3625, 35imbi12d 333 . 2 (𝐾 = if(𝐾 ∈ ℕ0, 𝐾, 1) → (((((𝑁 − 1)↑𝐾) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))) ≤ (((2↑(𝐾↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + 𝐾))) · (!‘(𝑁 − 1))) → ((𝑁↑(𝐾 + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)) ≤ (((2↑((𝐾 + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (𝐾 + 1)))) · (!‘𝑁))) ↔ ((((𝑁 − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))) ≤ (((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))) · (!‘(𝑁 − 1))) → ((𝑁↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)) ≤ (((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))) · (!‘𝑁)))))
37 oveq1 6556 . . . . . 6 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (𝑁 − 1) = (if(𝑁 ∈ ℕ, 𝑁, 1) − 1))
3837oveq1d 6564 . . . . 5 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → ((𝑁 − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) = ((if(𝑁 ∈ ℕ, 𝑁, 1) − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)))
3937oveq2d 6565 . . . . 5 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1)) = (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑁 ∈ ℕ, 𝑁, 1) − 1)))
4038, 39oveq12d 6567 . . . 4 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (((𝑁 − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))) = (((if(𝑁 ∈ ℕ, 𝑁, 1) − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑁 ∈ ℕ, 𝑁, 1) − 1))))
4137fveq2d 6107 . . . . 5 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (!‘(𝑁 − 1)) = (!‘(if(𝑁 ∈ ℕ, 𝑁, 1) − 1)))
4241oveq2d 6565 . . . 4 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))) · (!‘(𝑁 − 1))) = (((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))) · (!‘(if(𝑁 ∈ ℕ, 𝑁, 1) − 1))))
4340, 42breq12d 4596 . . 3 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → ((((𝑁 − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))) ≤ (((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))) · (!‘(𝑁 − 1))) ↔ (((if(𝑁 ∈ ℕ, 𝑁, 1) − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑁 ∈ ℕ, 𝑁, 1) − 1))) ≤ (((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))) · (!‘(if(𝑁 ∈ ℕ, 𝑁, 1) − 1)))))
44 oveq1 6556 . . . . 5 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (𝑁↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) = (if(𝑁 ∈ ℕ, 𝑁, 1)↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))
45 oveq2 6557 . . . . 5 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁) = (if(𝑀 ∈ ℕ0, 𝑀, 1)↑if(𝑁 ∈ ℕ, 𝑁, 1)))
4644, 45oveq12d 6567 . . . 4 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → ((𝑁↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)) = ((if(𝑁 ∈ ℕ, 𝑁, 1)↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑if(𝑁 ∈ ℕ, 𝑁, 1))))
47 fveq2 6103 . . . . 5 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (!‘𝑁) = (!‘if(𝑁 ∈ ℕ, 𝑁, 1)))
4847oveq2d 6565 . . . 4 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))) · (!‘𝑁)) = (((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))) · (!‘if(𝑁 ∈ ℕ, 𝑁, 1))))
4946, 48breq12d 4596 . . 3 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (((𝑁↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)) ≤ (((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))) · (!‘𝑁)) ↔ ((if(𝑁 ∈ ℕ, 𝑁, 1)↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑if(𝑁 ∈ ℕ, 𝑁, 1))) ≤ (((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))) · (!‘if(𝑁 ∈ ℕ, 𝑁, 1)))))
5043, 49imbi12d 333 . 2 (𝑁 = if(𝑁 ∈ ℕ, 𝑁, 1) → (((((𝑁 − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(𝑁 − 1))) ≤ (((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))) · (!‘(𝑁 − 1))) → ((𝑁↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑𝑁)) ≤ (((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))) · (!‘𝑁))) ↔ ((((if(𝑁 ∈ ℕ, 𝑁, 1) − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑁 ∈ ℕ, 𝑁, 1) − 1))) ≤ (((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))) · (!‘(if(𝑁 ∈ ℕ, 𝑁, 1) − 1))) → ((if(𝑁 ∈ ℕ, 𝑁, 1)↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑if(𝑁 ∈ ℕ, 𝑁, 1))) ≤ (((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))) · (!‘if(𝑁 ∈ ℕ, 𝑁, 1))))))
51 1nn 10908 . . . 4 1 ∈ ℕ
5251elimel 4100 . . 3 if(𝑁 ∈ ℕ, 𝑁, 1) ∈ ℕ
53 1nn0 11185 . . . 4 1 ∈ ℕ0
5453elimel 4100 . . 3 if(𝐾 ∈ ℕ0, 𝐾, 1) ∈ ℕ0
5553elimel 4100 . . 3 if(𝑀 ∈ ℕ0, 𝑀, 1) ∈ ℕ0
5652, 54, 55faclbnd4lem1 12942 . 2 ((((if(𝑁 ∈ ℕ, 𝑁, 1) − 1)↑if(𝐾 ∈ ℕ0, 𝐾, 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑁 ∈ ℕ, 𝑁, 1) − 1))) ≤ (((2↑(if(𝐾 ∈ ℕ0, 𝐾, 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + if(𝐾 ∈ ℕ0, 𝐾, 1)))) · (!‘(if(𝑁 ∈ ℕ, 𝑁, 1) − 1))) → ((if(𝑁 ∈ ℕ, 𝑁, 1)↑(if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑if(𝑁 ∈ ℕ, 𝑁, 1))) ≤ (((2↑((if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)↑2)) · (if(𝑀 ∈ ℕ0, 𝑀, 1)↑(if(𝑀 ∈ ℕ0, 𝑀, 1) + (if(𝐾 ∈ ℕ0, 𝐾, 1) + 1)))) · (!‘if(𝑁 ∈ ℕ, 𝑁, 1))))
5716, 36, 50, 56dedth3h 4091 1 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((((𝑁 − 1)↑𝐾) · (𝑀↑(𝑁 − 1))) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘(𝑁 − 1))) → ((𝑁↑(𝐾 + 1)) · (𝑀𝑁)) ≤ (((2↑((𝐾 + 1)↑2)) · (𝑀↑(𝑀 + (𝐾 + 1)))) · (!‘𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  ifcif 4036   class class class wbr 4583  cfv 5804  (class class class)co 6549  1c1 9816   + caddc 9818   · cmul 9820  cle 9954  cmin 10145  cn 10897  2c2 10947  0cn0 11169  cexp 12722  !cfa 12922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-fac 12923
This theorem is referenced by:  faclbnd4lem4  12945
  Copyright terms: Public domain W3C validator