Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnsrplycl Structured version   Visualization version   GIF version

Theorem cnsrplycl 36756
 Description: Polynomials are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.)
Hypotheses
Ref Expression
cnsrplycl.s (𝜑𝑆 ∈ (SubRing‘ℂfld))
cnsrplycl.p (𝜑𝑃 ∈ (Poly‘𝐶))
cnsrplycl.x (𝜑𝑋𝑆)
cnsrplycl.c (𝜑𝐶𝑆)
Assertion
Ref Expression
cnsrplycl (𝜑 → (𝑃𝑋) ∈ 𝑆)

Proof of Theorem cnsrplycl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cnsrplycl.c . . . . 5 (𝜑𝐶𝑆)
2 cnsrplycl.s . . . . . 6 (𝜑𝑆 ∈ (SubRing‘ℂfld))
3 cnfldbas 19571 . . . . . . 7 ℂ = (Base‘ℂfld)
43subrgss 18604 . . . . . 6 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
52, 4syl 17 . . . . 5 (𝜑𝑆 ⊆ ℂ)
6 plyss 23759 . . . . 5 ((𝐶𝑆𝑆 ⊆ ℂ) → (Poly‘𝐶) ⊆ (Poly‘𝑆))
71, 5, 6syl2anc 691 . . . 4 (𝜑 → (Poly‘𝐶) ⊆ (Poly‘𝑆))
8 cnsrplycl.p . . . 4 (𝜑𝑃 ∈ (Poly‘𝐶))
97, 8sseldd 3569 . . 3 (𝜑𝑃 ∈ (Poly‘𝑆))
10 cnsrplycl.x . . . 4 (𝜑𝑋𝑆)
115, 10sseldd 3569 . . 3 (𝜑𝑋 ∈ ℂ)
12 eqid 2610 . . . 4 (coeff‘𝑃) = (coeff‘𝑃)
13 eqid 2610 . . . 4 (deg‘𝑃) = (deg‘𝑃)
1412, 13coeid2 23799 . . 3 ((𝑃 ∈ (Poly‘𝑆) ∧ 𝑋 ∈ ℂ) → (𝑃𝑋) = Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋𝑘)))
159, 11, 14syl2anc 691 . 2 (𝜑 → (𝑃𝑋) = Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋𝑘)))
16 fzfid 12634 . . 3 (𝜑 → (0...(deg‘𝑃)) ∈ Fin)
172adantr 480 . . . 4 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → 𝑆 ∈ (SubRing‘ℂfld))
18 subrgsubg 18609 . . . . . . . 8 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld))
19 cnfld0 19589 . . . . . . . . 9 0 = (0g‘ℂfld)
2019subg0cl 17425 . . . . . . . 8 (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆)
212, 18, 203syl 18 . . . . . . 7 (𝜑 → 0 ∈ 𝑆)
2212coef2 23791 . . . . . . 7 ((𝑃 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → (coeff‘𝑃):ℕ0𝑆)
239, 21, 22syl2anc 691 . . . . . 6 (𝜑 → (coeff‘𝑃):ℕ0𝑆)
2423adantr 480 . . . . 5 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → (coeff‘𝑃):ℕ0𝑆)
25 elfznn0 12302 . . . . . 6 (𝑘 ∈ (0...(deg‘𝑃)) → 𝑘 ∈ ℕ0)
2625adantl 481 . . . . 5 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → 𝑘 ∈ ℕ0)
2724, 26ffvelrnd 6268 . . . 4 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → ((coeff‘𝑃)‘𝑘) ∈ 𝑆)
2810adantr 480 . . . . 5 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → 𝑋𝑆)
2917, 28, 26cnsrexpcl 36754 . . . 4 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → (𝑋𝑘) ∈ 𝑆)
30 cnfldmul 19573 . . . . 5 · = (.r‘ℂfld)
3130subrgmcl 18615 . . . 4 ((𝑆 ∈ (SubRing‘ℂfld) ∧ ((coeff‘𝑃)‘𝑘) ∈ 𝑆 ∧ (𝑋𝑘) ∈ 𝑆) → (((coeff‘𝑃)‘𝑘) · (𝑋𝑘)) ∈ 𝑆)
3217, 27, 29, 31syl3anc 1318 . . 3 ((𝜑𝑘 ∈ (0...(deg‘𝑃))) → (((coeff‘𝑃)‘𝑘) · (𝑋𝑘)) ∈ 𝑆)
332, 16, 32fsumcnsrcl 36755 . 2 (𝜑 → Σ𝑘 ∈ (0...(deg‘𝑃))(((coeff‘𝑃)‘𝑘) · (𝑋𝑘)) ∈ 𝑆)
3415, 33eqeltrd 2688 1 (𝜑 → (𝑃𝑋) ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ⊆ wss 3540  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815   · cmul 9820  ℕ0cn0 11169  ...cfz 12197  ↑cexp 12722  Σcsu 14264  SubGrpcsubg 17411  SubRingcsubrg 18599  ℂfldccnfld 19567  Polycply 23744  coeffccoe 23746  degcdgr 23747 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-subg 17414  df-cmn 18018  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-subrg 18601  df-cnfld 19568  df-0p 23243  df-ply 23748  df-coe 23750  df-dgr 23751 This theorem is referenced by:  rngunsnply  36762
 Copyright terms: Public domain W3C validator