Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clim2ser2 | Structured version Visualization version GIF version |
Description: The limit of an infinite series with an initial segment added. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.) |
Ref | Expression |
---|---|
clim2ser.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
clim2ser.2 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
clim2ser.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
clim2ser2.5 | ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ 𝐴) |
Ref | Expression |
---|---|
clim2ser2 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (𝐴 + (seq𝑀( + , 𝐹)‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . 2 ⊢ (ℤ≥‘(𝑁 + 1)) = (ℤ≥‘(𝑁 + 1)) | |
2 | clim2ser.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
3 | clim2ser.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 2, 3 | syl6eleq 2698 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | peano2uz 11617 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
7 | eluzelz 11573 | . . 3 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ ℤ) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
9 | clim2ser2.5 | . 2 ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ 𝐴) | |
10 | eluzel2 11568 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
11 | 4, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
12 | clim2ser.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
13 | 3, 11, 12 | serf 12691 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
14 | 13, 2 | ffvelrnd 6268 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ) |
15 | seqex 12665 | . . 3 ⊢ seq𝑀( + , 𝐹) ∈ V | |
16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ V) |
17 | 6, 3 | syl6eleqr 2699 | . . . . . 6 ⊢ (𝜑 → (𝑁 + 1) ∈ 𝑍) |
18 | 3 | uztrn2 11581 | . . . . . 6 ⊢ (((𝑁 + 1) ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ 𝑍) |
19 | 17, 18 | sylan 487 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ 𝑍) |
20 | 19, 12 | syldan 486 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → (𝐹‘𝑘) ∈ ℂ) |
21 | 1, 8, 20 | serf 12691 | . . 3 ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹):(ℤ≥‘(𝑁 + 1))⟶ℂ) |
22 | 21 | ffvelrnda 6267 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq(𝑁 + 1)( + , 𝐹)‘𝑗) ∈ ℂ) |
23 | addcl 9897 | . . . . 5 ⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ) | |
24 | 23 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ) |
25 | addass 9902 | . . . . 5 ⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦))) | |
26 | 25 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦))) |
27 | simpr 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) | |
28 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ (ℤ≥‘𝑀)) |
29 | elfzuz 12209 | . . . . . . 7 ⊢ (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
30 | 29, 3 | syl6eleqr 2699 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ 𝑍) |
31 | 30, 12 | sylan2 490 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹‘𝑘) ∈ ℂ) |
32 | 31 | adantlr 747 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹‘𝑘) ∈ ℂ) |
33 | 24, 26, 27, 28, 32 | seqsplit 12696 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹)‘𝑗))) |
34 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ) |
35 | 34, 22 | addcomd 10117 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → ((seq𝑀( + , 𝐹)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹)‘𝑗)) = ((seq(𝑁 + 1)( + , 𝐹)‘𝑗) + (seq𝑀( + , 𝐹)‘𝑁))) |
36 | 33, 35 | eqtrd 2644 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = ((seq(𝑁 + 1)( + , 𝐹)‘𝑗) + (seq𝑀( + , 𝐹)‘𝑁))) |
37 | 1, 8, 9, 14, 16, 22, 36 | climaddc1 14213 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (𝐴 + (seq𝑀( + , 𝐹)‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 Vcvv 3173 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 ℂcc 9813 1c1 9816 + caddc 9818 ℤcz 11254 ℤ≥cuz 11563 ...cfz 12197 seqcseq 12663 ⇝ cli 14063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-fz 12198 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-clim 14067 |
This theorem is referenced by: iserex 14235 abelthlem6 23994 abelthlem9 23998 leibpi 24469 |
Copyright terms: Public domain | W3C validator |