MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem6 Structured version   Visualization version   GIF version

Theorem abelthlem6 23994
Description: Lemma for abelth 23999. (Contributed by Mario Carneiro, 2-Apr-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
abelth.7 (𝜑 → seq0( + , 𝐴) ⇝ 0)
abelthlem6.1 (𝜑𝑋 ∈ (𝑆 ∖ {1}))
Assertion
Ref Expression
abelthlem6 (𝜑 → (𝐹𝑋) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
Distinct variable groups:   𝑥,𝑛,𝑧,𝑀   𝑛,𝑋,𝑥,𝑧   𝐴,𝑛,𝑥,𝑧   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑛)

Proof of Theorem abelthlem6
Dummy variables 𝑖 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abelthlem6.1 . . . 4 (𝜑𝑋 ∈ (𝑆 ∖ {1}))
21eldifad 3552 . . 3 (𝜑𝑋𝑆)
3 oveq1 6556 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝑛) = (𝑋𝑛))
43oveq2d 6565 . . . . 5 (𝑥 = 𝑋 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑛) · (𝑋𝑛)))
54sumeq2sdv 14282 . . . 4 (𝑥 = 𝑋 → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)))
6 abelth.6 . . . 4 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
7 sumex 14266 . . . 4 Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)) ∈ V
85, 6, 7fvmpt 6191 . . 3 (𝑋𝑆 → (𝐹𝑋) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)))
92, 8syl 17 . 2 (𝜑 → (𝐹𝑋) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)))
10 nn0uz 11598 . . 3 0 = (ℤ‘0)
11 0zd 11266 . . 3 (𝜑 → 0 ∈ ℤ)
12 fveq2 6103 . . . . . 6 (𝑘 = 𝑛 → (𝐴𝑘) = (𝐴𝑛))
13 oveq2 6557 . . . . . 6 (𝑘 = 𝑛 → (𝑋𝑘) = (𝑋𝑛))
1412, 13oveq12d 6567 . . . . 5 (𝑘 = 𝑛 → ((𝐴𝑘) · (𝑋𝑘)) = ((𝐴𝑛) · (𝑋𝑛)))
15 eqid 2610 . . . . 5 (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))
16 ovex 6577 . . . . 5 ((𝐴𝑛) · (𝑋𝑛)) ∈ V
1714, 15, 16fvmpt 6191 . . . 4 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))‘𝑛) = ((𝐴𝑛) · (𝑋𝑛)))
1817adantl 481 . . 3 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))‘𝑛) = ((𝐴𝑛) · (𝑋𝑛)))
19 abelth.1 . . . . 5 (𝜑𝐴:ℕ0⟶ℂ)
2019ffvelrnda 6267 . . . 4 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
21 abelth.5 . . . . . . 7 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
22 ssrab2 3650 . . . . . . 7 {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} ⊆ ℂ
2321, 22eqsstri 3598 . . . . . 6 𝑆 ⊆ ℂ
2423, 2sseldi 3566 . . . . 5 (𝜑𝑋 ∈ ℂ)
25 expcl 12740 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑋𝑛) ∈ ℂ)
2624, 25sylan 487 . . . 4 ((𝜑𝑛 ∈ ℕ0) → (𝑋𝑛) ∈ ℂ)
2720, 26mulcld 9939 . . 3 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑋𝑛)) ∈ ℂ)
28 fveq2 6103 . . . . . . . . 9 (𝑘 = 𝑛 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑛))
2928, 13oveq12d 6567 . . . . . . . 8 (𝑘 = 𝑛 → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
30 eqid 2610 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))
31 ovex 6577 . . . . . . . 8 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ V
3229, 30, 31fvmpt 6191 . . . . . . 7 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) = ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
3332adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) = ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
3410, 11, 20serf 12691 . . . . . . . 8 (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ)
3534ffvelrnda 6267 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑛) ∈ ℂ)
3635, 26mulcld 9939 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ ℂ)
37 abelth.2 . . . . . . . . . 10 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
38 abelth.3 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
39 abelth.4 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑀)
4019, 37, 38, 39, 21abelthlem2 23990 . . . . . . . . 9 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
4140simprd 478 . . . . . . . 8 (𝜑 → (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1))
4241, 1sseldd 3569 . . . . . . 7 (𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1))
43 abelth.7 . . . . . . . 8 (𝜑 → seq0( + , 𝐴) ⇝ 0)
4419, 37, 38, 39, 21, 6, 43abelthlem5 23993 . . . . . . 7 ((𝜑𝑋 ∈ (0(ball‘(abs ∘ − ))1)) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
4542, 44mpdan 699 . . . . . 6 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ dom ⇝ )
4610, 11, 33, 36, 45isumclim2 14331 . . . . 5 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ⇝ Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
47 seqex 12665 . . . . . 6 seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))) ∈ V
4847a1i 11 . . . . 5 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))) ∈ V)
49 0nn0 11184 . . . . . . . 8 0 ∈ ℕ0
5049a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
51 oveq1 6556 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝑘 − 1) = (𝑖 − 1))
5251oveq2d 6565 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (0...(𝑘 − 1)) = (0...(𝑖 − 1)))
5352sumeq1d 14279 . . . . . . . . . . 11 (𝑘 = 𝑖 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) = Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚))
54 oveq2 6557 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑋𝑘) = (𝑋𝑖))
5553, 54oveq12d 6567 . . . . . . . . . 10 (𝑘 = 𝑖 → (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)) = (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)))
56 eqid 2610 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))) = (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))
57 ovex 6577 . . . . . . . . . 10 𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)) ∈ V
5855, 56, 57fvmpt 6191 . . . . . . . . 9 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑖) = (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)))
5958adantl 481 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑖) = (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)))
60 fzfid 12634 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (0...(𝑖 − 1)) ∈ Fin)
6119adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ)
62 elfznn0 12302 . . . . . . . . . . 11 (𝑚 ∈ (0...(𝑖 − 1)) → 𝑚 ∈ ℕ0)
63 ffvelrn 6265 . . . . . . . . . . 11 ((𝐴:ℕ0⟶ℂ ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℂ)
6461, 62, 63syl2an 493 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑚 ∈ (0...(𝑖 − 1))) → (𝐴𝑚) ∈ ℂ)
6560, 64fsumcl 14311 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) ∈ ℂ)
66 expcl 12740 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑖 ∈ ℕ0) → (𝑋𝑖) ∈ ℂ)
6724, 66sylan 487 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑋𝑖) ∈ ℂ)
6865, 67mulcld 9939 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (Σ𝑚 ∈ (0...(𝑖 − 1))(𝐴𝑚) · (𝑋𝑖)) ∈ ℂ)
6959, 68eqeltrd 2688 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑖) ∈ ℂ)
7011peano2zd 11361 . . . . . . . . 9 (𝜑 → (0 + 1) ∈ ℤ)
71 nnuz 11599 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
72 1e0p1 11428 . . . . . . . . . . . . 13 1 = (0 + 1)
7372fveq2i 6106 . . . . . . . . . . . 12 (ℤ‘1) = (ℤ‘(0 + 1))
7471, 73eqtri 2632 . . . . . . . . . . 11 ℕ = (ℤ‘(0 + 1))
7574eleq2i 2680 . . . . . . . . . 10 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘(0 + 1)))
76 nnm1nn0 11211 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
7776adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑛 − 1) ∈ ℕ0)
78 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 − 1) → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘(𝑛 − 1)))
79 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 − 1) → (𝑋𝑘) = (𝑋↑(𝑛 − 1)))
8078, 79oveq12d 6567 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 − 1) → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1))))
8180oveq2d 6565 . . . . . . . . . . . . 13 (𝑘 = (𝑛 − 1) → (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))))
82 eqid 2610 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) = (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))
83 ovex 6577 . . . . . . . . . . . . 13 (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))) ∈ V
8481, 82, 83fvmpt 6191 . . . . . . . . . . . 12 ((𝑛 − 1) ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘(𝑛 − 1)) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))))
8577, 84syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘(𝑛 − 1)) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))))
86 ax-1cn 9873 . . . . . . . . . . . 12 1 ∈ ℂ
87 nncn 10905 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
8887adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
89 nn0ex 11175 . . . . . . . . . . . . . 14 0 ∈ V
9089mptex 6390 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) ∈ V
9190shftval 13662 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘(𝑛 − 1)))
9286, 88, 91sylancr 694 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘(𝑛 − 1)))
93 eqidd 2611 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝐴𝑚) = (𝐴𝑚))
9477, 10syl6eleq 2698 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑛 − 1) ∈ (ℤ‘0))
9519adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝐴:ℕ0⟶ℂ)
96 elfznn0 12302 . . . . . . . . . . . . . . 15 (𝑚 ∈ (0...(𝑛 − 1)) → 𝑚 ∈ ℕ0)
9795, 96, 63syl2an 493 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝐴𝑚) ∈ ℂ)
9893, 94, 97fsumser 14308 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) = (seq0( + , 𝐴)‘(𝑛 − 1)))
99 expm1t 12750 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ) → (𝑋𝑛) = ((𝑋↑(𝑛 − 1)) · 𝑋))
10024, 99sylan 487 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑋𝑛) = ((𝑋↑(𝑛 − 1)) · 𝑋))
10124adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℂ)
102 expcl 12740 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℂ ∧ (𝑛 − 1) ∈ ℕ0) → (𝑋↑(𝑛 − 1)) ∈ ℂ)
10324, 76, 102syl2an 493 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑋↑(𝑛 − 1)) ∈ ℂ)
104101, 103mulcomd 9940 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑋 · (𝑋↑(𝑛 − 1))) = ((𝑋↑(𝑛 − 1)) · 𝑋))
105100, 104eqtr4d 2647 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝑋𝑛) = (𝑋 · (𝑋↑(𝑛 − 1))))
10698, 105oveq12d 6567 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)) = ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋 · (𝑋↑(𝑛 − 1)))))
107 nnnn0 11176 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
108107adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
109 oveq1 6556 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1))
110109oveq2d 6565 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (0...(𝑘 − 1)) = (0...(𝑛 − 1)))
111110sumeq1d 14279 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) = Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚))
112111, 13oveq12d 6567 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)))
113 ovex 6577 . . . . . . . . . . . . . 14 𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)) ∈ V
114112, 56, 113fvmpt 6191 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)))
115108, 114syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)))
116 ffvelrn 6265 . . . . . . . . . . . . . 14 ((seq0( + , 𝐴):ℕ0⟶ℂ ∧ (𝑛 − 1) ∈ ℕ0) → (seq0( + , 𝐴)‘(𝑛 − 1)) ∈ ℂ)
11734, 76, 116syl2an 493 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (seq0( + , 𝐴)‘(𝑛 − 1)) ∈ ℂ)
118101, 117, 103mul12d 10124 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))) = ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋 · (𝑋↑(𝑛 − 1)))))
119106, 115, 1183eqtr4d 2654 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) = (𝑋 · ((seq0( + , 𝐴)‘(𝑛 − 1)) · (𝑋↑(𝑛 − 1)))))
12085, 92, 1193eqtr4d 2654 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛))
12175, 120sylan2br 492 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ‘(0 + 1))) → (((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)‘𝑛) = ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛))
12270, 121seqfeq 12688 . . . . . . . 8 (𝜑 → seq(0 + 1)( + , ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)) = seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))))
123 fveq2 6103 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑖))
124123, 54oveq12d 6567 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
125 ovex 6577 . . . . . . . . . . . . 13 ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)) ∈ V
126124, 30, 125fvmpt 6191 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
127126adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) = ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)))
12834ffvelrnda 6267 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
129128, 67mulcld 9939 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖)) ∈ ℂ)
130127, 129eqeltrd 2688 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖) ∈ ℂ)
131124oveq2d 6565 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
132 ovex 6577 . . . . . . . . . . . . 13 (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))) ∈ V
133131, 82, 132fvmpt 6191 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
134133adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
135127oveq2d 6565 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → (𝑋 · ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖)) = (𝑋 · ((seq0( + , 𝐴)‘𝑖) · (𝑋𝑖))))
136134, 135eqtr4d 2647 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) = (𝑋 · ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑖)))
13710, 11, 24, 46, 130, 136isermulc2 14236 . . . . . . . . 9 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
138 0z 11265 . . . . . . . . . 10 0 ∈ ℤ
139 1z 11284 . . . . . . . . . 10 1 ∈ ℤ
14090isershft 14242 . . . . . . . . . 10 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ↔ seq(0 + 1)( + , ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
141138, 139, 140mp2an 704 . . . . . . . . 9 (seq0( + , (𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ↔ seq(0 + 1)( + , ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
142137, 141sylib 207 . . . . . . . 8 (𝜑 → seq(0 + 1)( + , ((𝑘 ∈ ℕ0 ↦ (𝑋 · ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))) shift 1)) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
143122, 142eqbrtrrd 4607 . . . . . . 7 (𝜑 → seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
14410, 50, 69, 143clim2ser2 14234 . . . . . 6 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))) ⇝ ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0)))
145 seq1 12676 . . . . . . . . . . 11 (0 ∈ ℤ → (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘0))
146138, 145ax-mp 5 . . . . . . . . . 10 (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘0)
147 oveq1 6556 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘 − 1) = (0 − 1))
148147oveq2d 6565 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (0...(𝑘 − 1)) = (0...(0 − 1)))
149 0re 9919 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
150 ltm1 10742 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ → (0 − 1) < 0)
151149, 150ax-mp 5 . . . . . . . . . . . . . . . . 17 (0 − 1) < 0
152 peano2zm 11297 . . . . . . . . . . . . . . . . . . 19 (0 ∈ ℤ → (0 − 1) ∈ ℤ)
153138, 152ax-mp 5 . . . . . . . . . . . . . . . . . 18 (0 − 1) ∈ ℤ
154 fzn 12228 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℤ ∧ (0 − 1) ∈ ℤ) → ((0 − 1) < 0 ↔ (0...(0 − 1)) = ∅))
155138, 153, 154mp2an 704 . . . . . . . . . . . . . . . . 17 ((0 − 1) < 0 ↔ (0...(0 − 1)) = ∅)
156151, 155mpbi 219 . . . . . . . . . . . . . . . 16 (0...(0 − 1)) = ∅
157148, 156syl6eq 2660 . . . . . . . . . . . . . . 15 (𝑘 = 0 → (0...(𝑘 − 1)) = ∅)
158157sumeq1d 14279 . . . . . . . . . . . . . 14 (𝑘 = 0 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) = Σ𝑚 ∈ ∅ (𝐴𝑚))
159 sum0 14299 . . . . . . . . . . . . . 14 Σ𝑚 ∈ ∅ (𝐴𝑚) = 0
160158, 159syl6eq 2660 . . . . . . . . . . . . 13 (𝑘 = 0 → Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) = 0)
161 oveq2 6557 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑋𝑘) = (𝑋↑0))
162160, 161oveq12d 6567 . . . . . . . . . . . 12 (𝑘 = 0 → (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)) = (0 · (𝑋↑0)))
163 ovex 6577 . . . . . . . . . . . 12 (0 · (𝑋↑0)) ∈ V
164162, 56, 163fvmpt 6191 . . . . . . . . . . 11 (0 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘0) = (0 · (𝑋↑0)))
16549, 164ax-mp 5 . . . . . . . . . 10 ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘0) = (0 · (𝑋↑0))
166146, 165eqtri 2632 . . . . . . . . 9 (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0) = (0 · (𝑋↑0))
167 expcl 12740 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 0 ∈ ℕ0) → (𝑋↑0) ∈ ℂ)
16824, 49, 167sylancl 693 . . . . . . . . . 10 (𝜑 → (𝑋↑0) ∈ ℂ)
169168mul02d 10113 . . . . . . . . 9 (𝜑 → (0 · (𝑋↑0)) = 0)
170166, 169syl5eq 2656 . . . . . . . 8 (𝜑 → (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0) = 0)
171170oveq2d 6565 . . . . . . 7 (𝜑 → ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0)) = ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + 0))
17210, 11, 33, 36, 45isumcl 14334 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) ∈ ℂ)
17324, 172mulcld 9939 . . . . . . . 8 (𝜑 → (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) ∈ ℂ)
174173addid1d 10115 . . . . . . 7 (𝜑 → ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + 0) = (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
175171, 174eqtrd 2644 . . . . . 6 (𝜑 → ((𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘0)) = (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
176144, 175breqtrd 4609 . . . . 5 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))) ⇝ (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
17710, 11, 130serf 12691 . . . . . 6 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))):ℕ0⟶ℂ)
178177ffvelrnda 6267 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) ∈ ℂ)
17910, 11, 69serf 12691 . . . . . 6 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))):ℕ0⟶ℂ)
180179ffvelrnda 6267 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘𝑖) ∈ ℂ)
181 simpr 476 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
182181, 10syl6eleq 2698 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ (ℤ‘0))
183 simpl 472 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝜑)
184 elfznn0 12302 . . . . . . 7 (𝑛 ∈ (0...𝑖) → 𝑛 ∈ ℕ0)
18533, 36eqeltrd 2688 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
186183, 184, 185syl2an 493 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑖)) → ((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
187114adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)))
188 fzfid 12634 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (0...(𝑛 − 1)) ∈ Fin)
18919adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → 𝐴:ℕ0⟶ℂ)
190189, 96, 63syl2an 493 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑚 ∈ (0...(𝑛 − 1))) → (𝐴𝑚) ∈ ℂ)
191188, 190fsumcl 14311 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) ∈ ℂ)
192191, 26mulcld 9939 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛)) ∈ ℂ)
193187, 192eqeltrd 2688 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
194183, 184, 193syl2an 493 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑖)) → ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛) ∈ ℂ)
195 eqidd 2611 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝑛)) → (𝐴𝑚) = (𝐴𝑚))
196 simpr 476 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
197196, 10syl6eleq 2698 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ (ℤ‘0))
198 elfznn0 12302 . . . . . . . . . . . . . . 15 (𝑚 ∈ (0...𝑛) → 𝑚 ∈ ℕ0)
199189, 198, 63syl2an 493 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝑛)) → (𝐴𝑚) ∈ ℂ)
200195, 197, 199fsumser 14308 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → Σ𝑚 ∈ (0...𝑛)(𝐴𝑚) = (seq0( + , 𝐴)‘𝑛))
201 fveq2 6103 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝐴𝑚) = (𝐴𝑛))
202197, 199, 201fsumm1 14324 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → Σ𝑚 ∈ (0...𝑛)(𝐴𝑚) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) + (𝐴𝑛)))
203200, 202eqtr3d 2646 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑛) = (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) + (𝐴𝑛)))
204203oveq1d 6564 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)) = ((Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) + (𝐴𝑛)) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)))
205191, 20pncan2d 10273 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ((Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) + (𝐴𝑛)) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)) = (𝐴𝑛))
206204, 205eqtr2d 2645 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) = ((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)))
207206oveq1d 6564 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑋𝑛)) = (((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)) · (𝑋𝑛)))
20835, 191, 26subdird 10366 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (((seq0( + , 𝐴)‘𝑛) − Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚)) · (𝑋𝑛)) = (((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛))))
209207, 208eqtrd 2644 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑋𝑛)) = (((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛))))
21033, 187oveq12d 6567 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) − ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛)) = (((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (Σ𝑚 ∈ (0...(𝑛 − 1))(𝐴𝑚) · (𝑋𝑛))))
211209, 18, 2103eqtr4d 2654 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))‘𝑛) = (((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) − ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛)))
212183, 184, 211syl2an 493 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑖)) → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))‘𝑛) = (((𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘)))‘𝑛) − ((𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘)))‘𝑛)))
213182, 186, 194, 212sersub 12706 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘))))‘𝑖) = ((seq0( + , (𝑘 ∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋𝑘))))‘𝑖) − (seq0( + , (𝑘 ∈ ℕ0 ↦ (Σ𝑚 ∈ (0...(𝑘 − 1))(𝐴𝑚) · (𝑋𝑘))))‘𝑖)))
21410, 11, 46, 48, 176, 178, 180, 213climsub 14212 . . . 4 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))) ⇝ (Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
215 1cnd 9935 . . . . . 6 (𝜑 → 1 ∈ ℂ)
216215, 24, 172subdird 10366 . . . . 5 (𝜑 → ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) = ((1 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
217172mulid2d 9937 . . . . . 6 (𝜑 → (1 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) = Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))
218217oveq1d 6564 . . . . 5 (𝜑 → ((1 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))) = (Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
219216, 218eqtrd 2644 . . . 4 (𝜑 → ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))) = (Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)) − (𝑋 · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛)))))
220214, 219breqtrrd 4611 . . 3 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑋𝑘)))) ⇝ ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
22110, 11, 18, 27, 220isumclim 14330 . 2 (𝜑 → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑋𝑛)) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
2229, 221eqtrd 2644 1 (𝜑 → (𝐹𝑋) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  c0 3874  {csn 4125   class class class wbr 4583  cmpt 4643  dom cdm 5038  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  cn 10897  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  seqcseq 12663  cexp 12722   shift cshi 13654  abscabs 13822  cli 14063  Σcsu 14264  ballcbl 19554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562
This theorem is referenced by:  abelthlem7  23996
  Copyright terms: Public domain W3C validator