MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leibpi Structured version   Visualization version   GIF version

Theorem leibpi 24469
Description: The Leibniz formula for π. This proof depends on three main facts: (1) the series 𝐹 is convergent, because it is an alternating series (iseralt 14263). (2) Using leibpilem2 24468 to rewrite the series as a power series, it is the 𝑥 = 1 special case of the Taylor series for arctan (atantayl2 24465). (3) Although we cannot directly plug 𝑥 = 1 into atantayl2 24465, Abel's theorem (abelth2 24000) says that the limit along any sequence converging to 1, such as 1 − 1 / 𝑛, of the power series converges to the power series extended to 1, and then since arctan is continuous at 1 (atancn 24463) we get the desired result. This is Metamath 100 proof #26. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypothesis
Ref Expression
leibpi.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
Assertion
Ref Expression
leibpi seq0( + , 𝐹) ⇝ (π / 4)

Proof of Theorem leibpi
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11598 . . . . 5 0 = (ℤ‘0)
2 0zd 11266 . . . . 5 (⊤ → 0 ∈ ℤ)
3 eqidd 2611 . . . . 5 ((⊤ ∧ 𝑗 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
4 0cnd 9912 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ∧ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → 0 ∈ ℂ)
5 ioran 510 . . . . . . . . . 10 (¬ (𝑘 = 0 ∨ 2 ∥ 𝑘) ↔ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘))
6 neg1rr 11002 . . . . . . . . . . . . 13 -1 ∈ ℝ
7 leibpilem1 24467 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (𝑘 ∈ ℕ ∧ ((𝑘 − 1) / 2) ∈ ℕ0))
87simprd 478 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((𝑘 − 1) / 2) ∈ ℕ0)
9 reexpcl 12739 . . . . . . . . . . . . 13 ((-1 ∈ ℝ ∧ ((𝑘 − 1) / 2) ∈ ℕ0) → (-1↑((𝑘 − 1) / 2)) ∈ ℝ)
106, 8, 9sylancr 694 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (-1↑((𝑘 − 1) / 2)) ∈ ℝ)
117simpld 474 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → 𝑘 ∈ ℕ)
1210, 11nndivred 10946 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℝ)
1312recnd 9947 . . . . . . . . . 10 ((𝑘 ∈ ℕ0 ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℂ)
145, 13sylan2b 491 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ∧ ¬ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℂ)
154, 14ifclda 4070 . . . . . . . 8 (𝑘 ∈ ℕ0 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) ∈ ℂ)
1615adantl 481 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) ∈ ℂ)
17 eqid 2610 . . . . . . 7 (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))) = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
1816, 17fmptd 6292 . . . . . 6 (⊤ → (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))):ℕ0⟶ℂ)
1918ffvelrnda 6267 . . . . 5 ((⊤ ∧ 𝑗 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) ∈ ℂ)
20 2nn0 11186 . . . . . . . . . . . . . 14 2 ∈ ℕ0
2120a1i 11 . . . . . . . . . . . . 13 (⊤ → 2 ∈ ℕ0)
22 nn0mulcl 11206 . . . . . . . . . . . . 13 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
2321, 22sylan 487 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
24 nn0p1nn 11209 . . . . . . . . . . . 12 ((2 · 𝑛) ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
2523, 24syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ0) → ((2 · 𝑛) + 1) ∈ ℕ)
2625nnrecred 10943 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ0) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
27 eqid 2610 . . . . . . . . . 10 (𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1))) = (𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))
2826, 27fmptd 6292 . . . . . . . . 9 (⊤ → (𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1))):ℕ0⟶ℝ)
29 nn0mulcl 11206 . . . . . . . . . . . . . 14 ((2 ∈ ℕ0𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
3021, 29sylan 487 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℕ0)
3130nn0red 11229 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · 𝑘) ∈ ℝ)
32 peano2nn0 11210 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
3332adantl 481 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
34 nn0mulcl 11206 . . . . . . . . . . . . . 14 ((2 ∈ ℕ0 ∧ (𝑘 + 1) ∈ ℕ0) → (2 · (𝑘 + 1)) ∈ ℕ0)
3520, 33, 34sylancr 694 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · (𝑘 + 1)) ∈ ℕ0)
3635nn0red 11229 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · (𝑘 + 1)) ∈ ℝ)
37 1red 9934 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℝ)
38 nn0re 11178 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
3938adantl 481 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
4039lep1d 10834 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → 𝑘 ≤ (𝑘 + 1))
41 peano2re 10088 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
4239, 41syl 17 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℝ)
43 2re 10967 . . . . . . . . . . . . . . 15 2 ∈ ℝ
4443a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ0) → 2 ∈ ℝ)
45 2pos 10989 . . . . . . . . . . . . . . 15 0 < 2
4645a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 < 2)
47 lemul2 10755 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑘 ≤ (𝑘 + 1) ↔ (2 · 𝑘) ≤ (2 · (𝑘 + 1))))
4839, 42, 44, 46, 47syl112anc 1322 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝑘 ≤ (𝑘 + 1) ↔ (2 · 𝑘) ≤ (2 · (𝑘 + 1))))
4940, 48mpbid 221 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · 𝑘) ≤ (2 · (𝑘 + 1)))
5031, 36, 37, 49leadd1dd 10520 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ≤ ((2 · (𝑘 + 1)) + 1))
51 nn0p1nn 11209 . . . . . . . . . . . . . 14 ((2 · 𝑘) ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℕ)
5230, 51syl 17 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℕ)
5352nnred 10912 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℝ)
5452nngt0d 10941 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 < ((2 · 𝑘) + 1))
55 nn0p1nn 11209 . . . . . . . . . . . . . 14 ((2 · (𝑘 + 1)) ∈ ℕ0 → ((2 · (𝑘 + 1)) + 1) ∈ ℕ)
5635, 55syl 17 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · (𝑘 + 1)) + 1) ∈ ℕ)
5756nnred 10912 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · (𝑘 + 1)) + 1) ∈ ℝ)
5856nngt0d 10941 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 < ((2 · (𝑘 + 1)) + 1))
59 lerec 10785 . . . . . . . . . . . 12 (((((2 · 𝑘) + 1) ∈ ℝ ∧ 0 < ((2 · 𝑘) + 1)) ∧ (((2 · (𝑘 + 1)) + 1) ∈ ℝ ∧ 0 < ((2 · (𝑘 + 1)) + 1))) → (((2 · 𝑘) + 1) ≤ ((2 · (𝑘 + 1)) + 1) ↔ (1 / ((2 · (𝑘 + 1)) + 1)) ≤ (1 / ((2 · 𝑘) + 1))))
6053, 54, 57, 58, 59syl22anc 1319 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (((2 · 𝑘) + 1) ≤ ((2 · (𝑘 + 1)) + 1) ↔ (1 / ((2 · (𝑘 + 1)) + 1)) ≤ (1 / ((2 · 𝑘) + 1))))
6150, 60mpbid 221 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / ((2 · (𝑘 + 1)) + 1)) ≤ (1 / ((2 · 𝑘) + 1)))
62 oveq2 6557 . . . . . . . . . . . . . 14 (𝑛 = (𝑘 + 1) → (2 · 𝑛) = (2 · (𝑘 + 1)))
6362oveq1d 6564 . . . . . . . . . . . . 13 (𝑛 = (𝑘 + 1) → ((2 · 𝑛) + 1) = ((2 · (𝑘 + 1)) + 1))
6463oveq2d 6565 . . . . . . . . . . . 12 (𝑛 = (𝑘 + 1) → (1 / ((2 · 𝑛) + 1)) = (1 / ((2 · (𝑘 + 1)) + 1)))
65 ovex 6577 . . . . . . . . . . . 12 (1 / ((2 · (𝑘 + 1)) + 1)) ∈ V
6664, 27, 65fvmpt 6191 . . . . . . . . . . 11 ((𝑘 + 1) ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘(𝑘 + 1)) = (1 / ((2 · (𝑘 + 1)) + 1)))
6733, 66syl 17 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘(𝑘 + 1)) = (1 / ((2 · (𝑘 + 1)) + 1)))
68 oveq2 6557 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
6968oveq1d 6564 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
7069oveq2d 6565 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (1 / ((2 · 𝑛) + 1)) = (1 / ((2 · 𝑘) + 1)))
71 ovex 6577 . . . . . . . . . . . 12 (1 / ((2 · 𝑘) + 1)) ∈ V
7270, 27, 71fvmpt 6191 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘) = (1 / ((2 · 𝑘) + 1)))
7372adantl 481 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘) = (1 / ((2 · 𝑘) + 1)))
7461, 67, 733brtr4d 4615 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘(𝑘 + 1)) ≤ ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘))
75 nnuz 11599 . . . . . . . . . 10 ℕ = (ℤ‘1)
76 1zzd 11285 . . . . . . . . . 10 (⊤ → 1 ∈ ℤ)
77 ax-1cn 9873 . . . . . . . . . . 11 1 ∈ ℂ
78 divcnv 14424 . . . . . . . . . . 11 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
7977, 78mp1i 13 . . . . . . . . . 10 (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
80 nn0ex 11175 . . . . . . . . . . . 12 0 ∈ V
8180mptex 6390 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1))) ∈ V
8281a1i 11 . . . . . . . . . 10 (⊤ → (𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1))) ∈ V)
83 oveq2 6557 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
84 eqid 2610 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
85 ovex 6577 . . . . . . . . . . . . 13 (1 / 𝑘) ∈ V
8683, 84, 85fvmpt 6191 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) = (1 / 𝑘))
8786adantl 481 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) = (1 / 𝑘))
88 nnrecre 10934 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
8988adantl 481 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
9087, 89eqeltrd 2688 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) ∈ ℝ)
91 nnnn0 11176 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
9291adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
9392, 72syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘) = (1 / ((2 · 𝑘) + 1)))
9491, 52sylan2 490 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℕ)
9594nnrecred 10943 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ∈ ℝ)
9693, 95eqeltrd 2688 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘) ∈ ℝ)
97 nnre 10904 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
9897adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
9920, 92, 29sylancr 694 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ0)
10099nn0red 11229 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℝ)
101 peano2re 10088 . . . . . . . . . . . . . 14 ((2 · 𝑘) ∈ ℝ → ((2 · 𝑘) + 1) ∈ ℝ)
102100, 101syl 17 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℝ)
103 nn0addge1 11216 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝑘 ≤ (𝑘 + 𝑘))
10498, 92, 103syl2anc 691 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ (𝑘 + 𝑘))
10598recnd 9947 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
1061052timesd 11152 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) = (𝑘 + 𝑘))
107104, 106breqtrrd 4611 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ (2 · 𝑘))
108100lep1d 10834 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ≤ ((2 · 𝑘) + 1))
10998, 100, 102, 107, 108letrd 10073 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ ((2 · 𝑘) + 1))
110 nngt0 10926 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 0 < 𝑘)
111110adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 < 𝑘)
11294nnred 10912 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℝ)
11394nngt0d 10941 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 < ((2 · 𝑘) + 1))
114 lerec 10785 . . . . . . . . . . . . 13 (((𝑘 ∈ ℝ ∧ 0 < 𝑘) ∧ (((2 · 𝑘) + 1) ∈ ℝ ∧ 0 < ((2 · 𝑘) + 1))) → (𝑘 ≤ ((2 · 𝑘) + 1) ↔ (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘)))
11598, 111, 112, 113, 114syl22anc 1319 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 ≤ ((2 · 𝑘) + 1) ↔ (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘)))
116109, 115mpbid 221 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘))
117116, 93, 873brtr4d 4615 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘))
11894nnrpd 11746 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℝ+)
119118rpreccld 11758 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ∈ ℝ+)
120119rpge0d 11752 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 / ((2 · 𝑘) + 1)))
121120, 93breqtrrd 4611 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘))
12275, 76, 79, 82, 90, 96, 117, 121climsqz2 14220 . . . . . . . . 9 (⊤ → (𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1))) ⇝ 0)
123 neg1cn 11001 . . . . . . . . . . . . 13 -1 ∈ ℂ
124123a1i 11 . . . . . . . . . . . 12 (⊤ → -1 ∈ ℂ)
125 expcl 12740 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
126124, 125sylan 487 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
12752nncnd 10913 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ∈ ℂ)
12852nnne0d 10942 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2 · 𝑘) + 1) ≠ 0)
129126, 127, 128divrecd 10683 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((-1↑𝑘) / ((2 · 𝑘) + 1)) = ((-1↑𝑘) · (1 / ((2 · 𝑘) + 1))))
130 oveq2 6557 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (-1↑𝑛) = (-1↑𝑘))
131130, 69oveq12d 6567 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((-1↑𝑛) / ((2 · 𝑛) + 1)) = ((-1↑𝑘) / ((2 · 𝑘) + 1)))
132 eqid 2610 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))) = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
133 ovex 6577 . . . . . . . . . . . 12 ((-1↑𝑘) / ((2 · 𝑘) + 1)) ∈ V
134131, 132, 133fvmpt 6191 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))‘𝑘) = ((-1↑𝑘) / ((2 · 𝑘) + 1)))
135134adantl 481 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))‘𝑘) = ((-1↑𝑘) / ((2 · 𝑘) + 1)))
13673oveq2d 6565 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((-1↑𝑘) · ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘)) = ((-1↑𝑘) · (1 / ((2 · 𝑘) + 1))))
137129, 135, 1363eqtr4d 2654 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))‘𝑘) = ((-1↑𝑘) · ((𝑛 ∈ ℕ0 ↦ (1 / ((2 · 𝑛) + 1)))‘𝑘)))
1381, 2, 28, 74, 122, 137iseralt 14263 . . . . . . . 8 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))) ∈ dom ⇝ )
139 climdm 14133 . . . . . . . 8 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))) ∈ dom ⇝ ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))) ⇝ ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))))
140138, 139sylib 207 . . . . . . 7 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))) ⇝ ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))))
141 fvex 6113 . . . . . . . 8 ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))) ∈ V
142132, 17, 141leibpilem2 24468 . . . . . . 7 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))) ⇝ ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))) ↔ seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))))
143140, 142sylib 207 . . . . . 6 (⊤ → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))))
144 seqex 12665 . . . . . . 7 seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ∈ V
145144, 141breldm 5251 . . . . . 6 (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ ( ⇝ ‘seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))))) → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ∈ dom ⇝ )
146143, 145syl 17 . . . . 5 (⊤ → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ∈ dom ⇝ )
1471, 2, 3, 19, 146isumclim2 14331 . . . 4 (⊤ → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
148 eqid 2610 . . . . . . . 8 (𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))) = (𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)))
14918, 146, 148abelth2 24000 . . . . . . 7 (⊤ → (𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))) ∈ ((0[,]1)–cn→ℂ))
150 nnrp 11718 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
151150adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
152151rpreccld 11758 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
153152rpred 11748 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
154152rpge0d 11752 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → 0 ≤ (1 / 𝑛))
155 nnge1 10923 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 1 ≤ 𝑛)
156155adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → 1 ≤ 𝑛)
157 nnre 10904 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
158157adantl 481 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
159158recnd 9947 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
160159mulid1d 9936 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝑛 · 1) = 𝑛)
161156, 160breqtrrd 4611 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → 1 ≤ (𝑛 · 1))
162 1red 9934 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → 1 ∈ ℝ)
163 nngt0 10926 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 0 < 𝑛)
164163adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → 0 < 𝑛)
165 ledivmul 10778 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((1 / 𝑛) ≤ 1 ↔ 1 ≤ (𝑛 · 1)))
166162, 162, 158, 164, 165syl112anc 1322 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) ≤ 1 ↔ 1 ≤ (𝑛 · 1)))
167161, 166mpbird 246 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ≤ 1)
168 0re 9919 . . . . . . . . . . 11 0 ∈ ℝ
169 1re 9918 . . . . . . . . . . 11 1 ∈ ℝ
170168, 169elicc2i 12110 . . . . . . . . . 10 ((1 / 𝑛) ∈ (0[,]1) ↔ ((1 / 𝑛) ∈ ℝ ∧ 0 ≤ (1 / 𝑛) ∧ (1 / 𝑛) ≤ 1))
171153, 154, 167, 170syl3anbrc 1239 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ (0[,]1))
172 iirev 22536 . . . . . . . . 9 ((1 / 𝑛) ∈ (0[,]1) → (1 − (1 / 𝑛)) ∈ (0[,]1))
173171, 172syl 17 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 − (1 / 𝑛)) ∈ (0[,]1))
174 eqid 2610 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))) = (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))
175173, 174fmptd 6292 . . . . . . 7 (⊤ → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))):ℕ⟶(0[,]1))
176 1cnd 9935 . . . . . . . . 9 (⊤ → 1 ∈ ℂ)
177 nnex 10903 . . . . . . . . . . 11 ℕ ∈ V
178177mptex 6390 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))) ∈ V
179178a1i 11 . . . . . . . . 9 (⊤ → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))) ∈ V)
18090recnd 9947 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) ∈ ℂ)
18183oveq2d 6565 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (1 − (1 / 𝑛)) = (1 − (1 / 𝑘)))
182 ovex 6577 . . . . . . . . . . . 12 (1 − (1 / 𝑘)) ∈ V
183181, 174, 182fvmpt 6191 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))‘𝑘) = (1 − (1 / 𝑘)))
18486oveq2d 6565 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (1 − ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘)) = (1 − (1 / 𝑘)))
185183, 184eqtr4d 2647 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))‘𝑘) = (1 − ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘)))
186185adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))‘𝑘) = (1 − ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘)))
18775, 76, 79, 176, 179, 180, 186climsubc2 14217 . . . . . . . 8 (⊤ → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))) ⇝ (1 − 0))
188 1m0e1 11008 . . . . . . . 8 (1 − 0) = 1
189187, 188syl6breq 4624 . . . . . . 7 (⊤ → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))) ⇝ 1)
190 1elunit 12162 . . . . . . . 8 1 ∈ (0[,]1)
191190a1i 11 . . . . . . 7 (⊤ → 1 ∈ (0[,]1))
19275, 76, 149, 175, 189, 191climcncf 22511 . . . . . 6 (⊤ → ((𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))) ∘ (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))) ⇝ ((𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)))‘1))
193 eqidd 2611 . . . . . . . 8 (⊤ → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))) = (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))))
194 eqidd 2611 . . . . . . . 8 (⊤ → (𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))) = (𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))))
195 oveq1 6556 . . . . . . . . . 10 (𝑥 = (1 − (1 / 𝑛)) → (𝑥𝑗) = ((1 − (1 / 𝑛))↑𝑗))
196195oveq2d 6565 . . . . . . . . 9 (𝑥 = (1 − (1 / 𝑛)) → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)))
197196sumeq2sdv 14282 . . . . . . . 8 (𝑥 = (1 − (1 / 𝑛)) → Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)) = Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)))
198173, 193, 194, 197fmptco 6303 . . . . . . 7 (⊤ → ((𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))) ∘ (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))) = (𝑛 ∈ ℕ ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗))))
199 0zd 11266 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → 0 ∈ ℤ)
2008adantll 746 . . . . . . . . . . . . . . . . . . . . . 22 (((⊤ ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((𝑘 − 1) / 2) ∈ ℕ0)
2016, 200, 9sylancr 694 . . . . . . . . . . . . . . . . . . . . 21 (((⊤ ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (-1↑((𝑘 − 1) / 2)) ∈ ℝ)
202201recnd 9947 . . . . . . . . . . . . . . . . . . . 20 (((⊤ ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (-1↑((𝑘 − 1) / 2)) ∈ ℂ)
203202adantllr 751 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (-1↑((𝑘 − 1) / 2)) ∈ ℂ)
204 resubcl 10224 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℝ ∧ (1 / 𝑛) ∈ ℝ) → (1 − (1 / 𝑛)) ∈ ℝ)
205169, 153, 204sylancr 694 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 − (1 / 𝑛)) ∈ ℝ)
206205ad2antrr 758 . . . . . . . . . . . . . . . . . . . . 21 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (1 − (1 / 𝑛)) ∈ ℝ)
207 simplr 788 . . . . . . . . . . . . . . . . . . . . 21 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → 𝑘 ∈ ℕ0)
208206, 207reexpcld 12887 . . . . . . . . . . . . . . . . . . . 20 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((1 − (1 / 𝑛))↑𝑘) ∈ ℝ)
209208recnd 9947 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((1 − (1 / 𝑛))↑𝑘) ∈ ℂ)
210 nn0cn 11179 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
211210ad2antlr 759 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → 𝑘 ∈ ℂ)
21211adantll 746 . . . . . . . . . . . . . . . . . . . 20 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → 𝑘 ∈ ℕ)
213212nnne0d 10942 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → 𝑘 ≠ 0)
214203, 209, 211, 213div12d 10716 . . . . . . . . . . . . . . . . . 18 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)) = (((1 − (1 / 𝑛))↑𝑘) · ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
21513adantll 746 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ ℂ)
216209, 215mulcomd 9940 . . . . . . . . . . . . . . . . . 18 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (((1 − (1 / 𝑛))↑𝑘) · ((-1↑((𝑘 − 1) / 2)) / 𝑘)) = (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘)))
217214, 216eqtrd 2644 . . . . . . . . . . . . . . . . 17 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)) = (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘)))
2185, 217sylan2b 491 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ ¬ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)) = (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘)))
219218ifeq2da 4067 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘))))
220205recnd 9947 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 − (1 / 𝑛)) ∈ ℂ)
221 expcl 12740 . . . . . . . . . . . . . . . . . 18 (((1 − (1 / 𝑛)) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1 − (1 / 𝑛))↑𝑘) ∈ ℂ)
222220, 221sylan 487 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((1 − (1 / 𝑛))↑𝑘) ∈ ℂ)
223222mul02d 10113 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (0 · ((1 − (1 / 𝑛))↑𝑘)) = 0)
224223ifeq1d 4054 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), (0 · ((1 − (1 / 𝑛))↑𝑘)), (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘))) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘))))
225219, 224eqtr4d 2647 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), (0 · ((1 − (1 / 𝑛))↑𝑘)), (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘))))
226 ovif 6635 . . . . . . . . . . . . . 14 (if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) · ((1 − (1 / 𝑛))↑𝑘)) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), (0 · ((1 − (1 / 𝑛))↑𝑘)), (((-1↑((𝑘 − 1) / 2)) / 𝑘) · ((1 − (1 / 𝑛))↑𝑘)))
227225, 226syl6eqr 2662 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) = (if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) · ((1 − (1 / 𝑛))↑𝑘)))
228 simpr 476 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
229 c0ex 9913 . . . . . . . . . . . . . . 15 0 ∈ V
230 ovex 6577 . . . . . . . . . . . . . . 15 ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)) ∈ V
231229, 230ifex 4106 . . . . . . . . . . . . . 14 if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) ∈ V
232 eqid 2610 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))) = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
233232fvmpt2 6200 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0 ∧ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) ∈ V) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
234228, 231, 233sylancl 693 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
235 ovex 6577 . . . . . . . . . . . . . . . 16 ((-1↑((𝑘 − 1) / 2)) / 𝑘) ∈ V
236229, 235ifex 4106 . . . . . . . . . . . . . . 15 if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) ∈ V
23717fvmpt2 6200 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ0 ∧ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) ∈ V) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
238228, 236, 237sylancl 693 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))
239238oveq1d 6564 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘)) = (if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)) · ((1 − (1 / 𝑛))↑𝑘)))
240227, 234, 2393eqtr4d 2654 . . . . . . . . . . . 12 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘)))
241240ralrimiva 2949 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘)))
242 nfv 1830 . . . . . . . . . . . 12 𝑗((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘))
243 nffvmpt1 6111 . . . . . . . . . . . . 13 𝑘((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗)
244 nffvmpt1 6111 . . . . . . . . . . . . . 14 𝑘((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗)
245 nfcv 2751 . . . . . . . . . . . . . 14 𝑘 ·
246 nfcv 2751 . . . . . . . . . . . . . 14 𝑘((1 − (1 / 𝑛))↑𝑗)
247244, 245, 246nfov 6575 . . . . . . . . . . . . 13 𝑘(((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗))
248243, 247nfeq 2762 . . . . . . . . . . . 12 𝑘((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗))
249 fveq2 6103 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗))
250 fveq2 6103 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
251 oveq2 6557 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ((1 − (1 / 𝑛))↑𝑘) = ((1 − (1 / 𝑛))↑𝑗))
252250, 251oveq12d 6567 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘)) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)))
253249, 252eqeq12d 2625 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘)) ↔ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗))))
254242, 248, 253cbvral 3143 . . . . . . . . . . 11 (∀𝑘 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑘) · ((1 − (1 / 𝑛))↑𝑘)) ↔ ∀𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)))
255241, 254sylib 207 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → ∀𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)))
256255r19.21bi 2916 . . . . . . . . 9 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)))
257 0cnd 9912 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → 0 ∈ ℂ)
258208, 212nndivred 10946 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (((1 − (1 / 𝑛))↑𝑘) / 𝑘) ∈ ℝ)
259258recnd 9947 . . . . . . . . . . . . . . 15 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → (((1 − (1 / 𝑛))↑𝑘) / 𝑘) ∈ ℂ)
260203, 259mulcld 9939 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ (¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)) ∈ ℂ)
2615, 260sylan2b 491 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) ∧ ¬ (𝑘 = 0 ∨ 2 ∥ 𝑘)) → ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)) ∈ ℂ)
262257, 261ifclda 4070 . . . . . . . . . . . 12 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) ∈ ℂ)
263262, 232fmptd 6292 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))):ℕ0⟶ℂ)
264263ffvelrnda 6267 . . . . . . . . . 10 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) ∈ ℂ)
265256, 264eqeltrrd 2689 . . . . . . . . 9 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)) ∈ ℂ)
266 0nn0 11184 . . . . . . . . . . . 12 0 ∈ ℕ0
267266a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → 0 ∈ ℕ0)
268 0p1e1 11009 . . . . . . . . . . . . 13 (0 + 1) = 1
269 seqeq1 12666 . . . . . . . . . . . . 13 ((0 + 1) = 1 → seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) = seq1( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))))
270268, 269ax-mp 5 . . . . . . . . . . . 12 seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) = seq1( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))
271 1zzd 11285 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑛 ∈ ℕ) → 1 ∈ ℤ)
272 elnnuz 11600 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
273 nnne0 10930 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
274273neneqd 2787 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℕ → ¬ 𝑘 = 0)
275 biorf 419 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘 = 0 → (2 ∥ 𝑘 ↔ (𝑘 = 0 ∨ 2 ∥ 𝑘)))
276274, 275syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ → (2 ∥ 𝑘 ↔ (𝑘 = 0 ∨ 2 ∥ 𝑘)))
277276bicomd 212 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ → ((𝑘 = 0 ∨ 2 ∥ 𝑘) ↔ 2 ∥ 𝑘))
278277ifbid 4058 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) = if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
27991, 231, 233sylancl 693 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
280229, 230ifex 4106 . . . . . . . . . . . . . . . . . . . . 21 if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) ∈ V
281 eqid 2610 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))) = (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
282281fvmpt2 6200 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) ∈ V) → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
283280, 282mpan2 703 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))
284278, 279, 2833eqtr4d 2654 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘))
285284rgen 2906 . . . . . . . . . . . . . . . . . 18 𝑘 ∈ ℕ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘)
286285a1i 11 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ ℕ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘))
287 nfv 1830 . . . . . . . . . . . . . . . . . 18 𝑗((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘)
288 nffvmpt1 6111 . . . . . . . . . . . . . . . . . . 19 𝑘((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗)
289243, 288nfeq 2762 . . . . . . . . . . . . . . . . . 18 𝑘((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗)
290 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑗 → ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗))
291249, 290eqeq12d 2625 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑗 → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) ↔ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗)))
292287, 289, 291cbvral 3143 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ ℕ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑘) ↔ ∀𝑗 ∈ ℕ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗))
293286, 292sylib 207 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑛 ∈ ℕ) → ∀𝑗 ∈ ℕ ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗))
294293r19.21bi 2916 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗))
295272, 294sylan2br 492 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗) = ((𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘𝑗))
296271, 295seqfeq 12688 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑛 ∈ ℕ) → seq1( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) = seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))))
297153, 162, 167abssubge0d 14018 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑛 ∈ ℕ) → (abs‘(1 − (1 / 𝑛))) = (1 − (1 / 𝑛)))
298 ltsubrp 11742 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (1 / 𝑛) ∈ ℝ+) → (1 − (1 / 𝑛)) < 1)
299169, 152, 298sylancr 694 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 − (1 / 𝑛)) < 1)
300297, 299eqbrtrd 4605 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑛 ∈ ℕ) → (abs‘(1 − (1 / 𝑛))) < 1)
301281atantayl2 24465 . . . . . . . . . . . . . 14 (((1 − (1 / 𝑛)) ∈ ℂ ∧ (abs‘(1 − (1 / 𝑛))) < 1) → seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) ⇝ (arctan‘(1 − (1 / 𝑛))))
302220, 300, 301syl2anc 691 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑛 ∈ ℕ) → seq1( + , (𝑘 ∈ ℕ ↦ if(2 ∥ 𝑘, 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) ⇝ (arctan‘(1 − (1 / 𝑛))))
303296, 302eqbrtrd 4605 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → seq1( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) ⇝ (arctan‘(1 − (1 / 𝑛))))
304270, 303syl5eqbr 4618 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) ⇝ (arctan‘(1 − (1 / 𝑛))))
3051, 267, 264, 304clim2ser2 14234 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) ⇝ ((arctan‘(1 − (1 / 𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))‘0)))
306 0z 11265 . . . . . . . . . . . . . 14 0 ∈ ℤ
307 seq1 12676 . . . . . . . . . . . . . 14 (0 ∈ ℤ → (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))‘0) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘0))
308306, 307ax-mp 5 . . . . . . . . . . . . 13 (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))‘0) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘0)
309 iftrue 4042 . . . . . . . . . . . . . . . 16 ((𝑘 = 0 ∨ 2 ∥ 𝑘) → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) = 0)
310309orcs 408 . . . . . . . . . . . . . . 15 (𝑘 = 0 → if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))) = 0)
311310, 232, 229fvmpt 6191 . . . . . . . . . . . . . 14 (0 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘0) = 0)
312266, 311ax-mp 5 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))‘0) = 0
313308, 312eqtri 2632 . . . . . . . . . . . 12 (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))‘0) = 0
314313oveq2i 6560 . . . . . . . . . . 11 ((arctan‘(1 − (1 / 𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))‘0)) = ((arctan‘(1 − (1 / 𝑛))) + 0)
315 atanrecl 24438 . . . . . . . . . . . . . 14 ((1 − (1 / 𝑛)) ∈ ℝ → (arctan‘(1 − (1 / 𝑛))) ∈ ℝ)
316205, 315syl 17 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑛 ∈ ℕ) → (arctan‘(1 − (1 / 𝑛))) ∈ ℝ)
317316recnd 9947 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → (arctan‘(1 − (1 / 𝑛))) ∈ ℂ)
318317addid1d 10115 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → ((arctan‘(1 − (1 / 𝑛))) + 0) = (arctan‘(1 − (1 / 𝑛))))
319314, 318syl5eq 2656 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → ((arctan‘(1 − (1 / 𝑛))) + (seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘)))))‘0)) = (arctan‘(1 − (1 / 𝑛))))
320305, 319breqtrd 4609 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) · (((1 − (1 / 𝑛))↑𝑘) / 𝑘))))) ⇝ (arctan‘(1 − (1 / 𝑛))))
3211, 199, 256, 265, 320isumclim 14330 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗)) = (arctan‘(1 − (1 / 𝑛))))
322321mpteq2dva 4672 . . . . . . 7 (⊤ → (𝑛 ∈ ℕ ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · ((1 − (1 / 𝑛))↑𝑗))) = (𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))))
323198, 322eqtrd 2644 . . . . . 6 (⊤ → ((𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗))) ∘ (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))))
324 oveq1 6556 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥𝑗) = (1↑𝑗))
325 nn0z 11277 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0𝑗 ∈ ℤ)
326 1exp 12751 . . . . . . . . . . . . 13 (𝑗 ∈ ℤ → (1↑𝑗) = 1)
327325, 326syl 17 . . . . . . . . . . . 12 (𝑗 ∈ ℕ0 → (1↑𝑗) = 1)
328324, 327sylan9eq 2664 . . . . . . . . . . 11 ((𝑥 = 1 ∧ 𝑗 ∈ ℕ0) → (𝑥𝑗) = 1)
329328oveq2d 6565 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑗 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)) = (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · 1))
33018trud 1484 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))):ℕ0⟶ℂ
331330ffvelrni 6266 . . . . . . . . . . . 12 (𝑗 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) ∈ ℂ)
332331mulid1d 9936 . . . . . . . . . . 11 (𝑗 ∈ ℕ0 → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · 1) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
333332adantl 481 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑗 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · 1) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
334329, 333eqtrd 2644 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑗 ∈ ℕ0) → (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)) = ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
335334sumeq2dv 14281 . . . . . . . 8 (𝑥 = 1 → Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)) = Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
336 sumex 14266 . . . . . . . 8 Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) ∈ V
337335, 148, 336fvmpt 6191 . . . . . . 7 (1 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)))‘1) = Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
338190, 337mp1i 13 . . . . . 6 (⊤ → ((𝑥 ∈ (0[,]1) ↦ Σ𝑗 ∈ ℕ0 (((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) · (𝑥𝑗)))‘1) = Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
339192, 323, 3383brtr3d 4614 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))) ⇝ Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗))
340 eqid 2610 . . . . . . . . 9 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
341 eqid 2610 . . . . . . . . 9 {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} = {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}
342340, 341atancn 24463 . . . . . . . 8 (arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) ∈ ({𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}–cn→ℂ)
343342a1i 11 . . . . . . 7 (⊤ → (arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) ∈ ({𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}–cn→ℂ))
344 unitssre 12190 . . . . . . . . 9 (0[,]1) ⊆ ℝ
345340, 341ressatans 24461 . . . . . . . . 9 ℝ ⊆ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}
346344, 345sstri 3577 . . . . . . . 8 (0[,]1) ⊆ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}
347 fss 5969 . . . . . . . 8 (((𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))):ℕ⟶(0[,]1) ∧ (0[,]1) ⊆ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))):ℕ⟶{𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})
348175, 346, 347sylancl 693 . . . . . . 7 (⊤ → (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛))):ℕ⟶{𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})
349345, 169sselii 3565 . . . . . . . 8 1 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}
350349a1i 11 . . . . . . 7 (⊤ → 1 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})
35175, 76, 343, 348, 189, 350climcncf 22511 . . . . . 6 (⊤ → ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) ∘ (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))) ⇝ ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘1))
352346, 173sseldi 3566 . . . . . . 7 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 − (1 / 𝑛)) ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})
353 cncff 22504 . . . . . . . . . 10 ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) ∈ ({𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}–cn→ℂ) → (arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}):{𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}⟶ℂ)
354342, 353mp1i 13 . . . . . . . . 9 (⊤ → (arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}):{𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}⟶ℂ)
355354feqmptd 6159 . . . . . . . 8 (⊤ → (arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) = (𝑘 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} ↦ ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘𝑘)))
356 fvres 6117 . . . . . . . . 9 (𝑘 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} → ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘𝑘) = (arctan‘𝑘))
357356mpteq2ia 4668 . . . . . . . 8 (𝑘 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} ↦ ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘𝑘)) = (𝑘 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} ↦ (arctan‘𝑘))
358355, 357syl6eq 2660 . . . . . . 7 (⊤ → (arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) = (𝑘 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} ↦ (arctan‘𝑘)))
359 fveq2 6103 . . . . . . 7 (𝑘 = (1 − (1 / 𝑛)) → (arctan‘𝑘) = (arctan‘(1 − (1 / 𝑛))))
360352, 193, 358, 359fmptco 6303 . . . . . 6 (⊤ → ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))}) ∘ (𝑛 ∈ ℕ ↦ (1 − (1 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))))
361 fvres 6117 . . . . . . . 8 (1 ∈ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))} → ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘1) = (arctan‘1))
362349, 361mp1i 13 . . . . . . 7 (⊤ → ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘1) = (arctan‘1))
363 atan1 24455 . . . . . . 7 (arctan‘1) = (π / 4)
364362, 363syl6eq 2660 . . . . . 6 (⊤ → ((arctan ↾ {𝑥 ∈ ℂ ∣ (1 + (𝑥↑2)) ∈ (ℂ ∖ (-∞(,]0))})‘1) = (π / 4))
365351, 360, 3643brtr3d 4614 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))) ⇝ (π / 4))
366 climuni 14131 . . . . 5 (((𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))) ⇝ Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) ∧ (𝑛 ∈ ℕ ↦ (arctan‘(1 − (1 / 𝑛)))) ⇝ (π / 4)) → Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) = (π / 4))
367339, 365, 366syl2anc 691 . . . 4 (⊤ → Σ𝑗 ∈ ℕ0 ((𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))‘𝑗) = (π / 4))
368147, 367breqtrd 4609 . . 3 (⊤ → seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ (π / 4))
369368trud 1484 . 2 seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ (π / 4)
370 leibpi.1 . . 3 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1)))
371 ovex 6577 . . 3 (π / 4) ∈ V
372370, 17, 371leibpilem2 24468 . 2 (seq0( + , 𝐹) ⇝ (π / 4) ↔ seq0( + , (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘)))) ⇝ (π / 4))
373369, 372mpbir 220 1 seq0( + , 𝐹) ⇝ (π / 4)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195  wo 382  wa 383   = wceq 1475  wtru 1476  wcel 1977  wral 2896  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  ifcif 4036   class class class wbr 4583  cmpt 4643  dom cdm 5038  cres 5040  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  -∞cmnf 9951   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  4c4 10949  0cn0 11169  cz 11254  cuz 11563  +crp 11708  (,]cioc 12047  [,]cicc 12049  seqcseq 12663  cexp 12722  abscabs 13822  cli 14063  Σcsu 14264  πcpi 14636  cdvds 14821  cnccncf 22487  arctancatan 24391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-tan 14641  df-pi 14642  df-dvds 14822  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-t1 20928  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-ulm 23935  df-log 24107  df-atan 24394
This theorem is referenced by:  leibpisum  24470
  Copyright terms: Public domain W3C validator