Step | Hyp | Ref
| Expression |
1 | | caushft.8 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) |
2 | | caures.1 |
. . . . . 6
⊢ 𝑍 =
(ℤ≥‘𝑀) |
3 | | caures.4 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
4 | | metxmet 21949 |
. . . . . . 7
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
5 | 3, 4 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
6 | | caures.3 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
7 | | caushft.7 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘(𝑘 + 𝑁))) |
8 | 7 | ralrimiva 2949 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) = (𝐺‘(𝑘 + 𝑁))) |
9 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
10 | | oveq1 6556 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → (𝑘 + 𝑁) = (𝑗 + 𝑁)) |
11 | 10 | fveq2d 6107 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (𝐺‘(𝑘 + 𝑁)) = (𝐺‘(𝑗 + 𝑁))) |
12 | 9, 11 | eqeq12d 2625 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) = (𝐺‘(𝑘 + 𝑁)) ↔ (𝐹‘𝑗) = (𝐺‘(𝑗 + 𝑁)))) |
13 | 12 | rspccva 3281 |
. . . . . . 7
⊢
((∀𝑘 ∈
𝑍 (𝐹‘𝑘) = (𝐺‘(𝑘 + 𝑁)) ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘(𝑗 + 𝑁))) |
14 | 8, 13 | sylan 487 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = (𝐺‘(𝑗 + 𝑁))) |
15 | 2, 5, 6, 7, 14 | iscau4 22885 |
. . . . 5
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)))) |
16 | 1, 15 | mpbid 221 |
. . . 4
⊢ (𝜑 → (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))) |
17 | 16 | simprd 478 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)) |
18 | 2 | eleq2i 2680 |
. . . . . . . . 9
⊢ (𝑗 ∈ 𝑍 ↔ 𝑗 ∈ (ℤ≥‘𝑀)) |
19 | 18 | biimpi 205 |
. . . . . . . 8
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (ℤ≥‘𝑀)) |
20 | | caushft.5 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) |
21 | | eluzadd 11592 |
. . . . . . . 8
⊢ ((𝑗 ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝑗 + 𝑁) ∈
(ℤ≥‘(𝑀 + 𝑁))) |
22 | 19, 20, 21 | syl2anr 494 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 𝑁) ∈
(ℤ≥‘(𝑀 + 𝑁))) |
23 | | caushft.4 |
. . . . . . 7
⊢ 𝑊 =
(ℤ≥‘(𝑀 + 𝑁)) |
24 | 22, 23 | syl6eleqr 2699 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 𝑁) ∈ 𝑊) |
25 | | simplr 788 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝑗 ∈ 𝑍) |
26 | 25, 2 | syl6eleq 2698 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝑗 ∈ (ℤ≥‘𝑀)) |
27 | | eluzelz 11573 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℤ) |
28 | 26, 27 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝑗 ∈ ℤ) |
29 | 20 | ad2antrr 758 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝑁 ∈ ℤ) |
30 | | simpr 476 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) |
31 | | eluzsub 11593 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈
(ℤ≥‘(𝑗 + 𝑁))) → (𝑚 − 𝑁) ∈ (ℤ≥‘𝑗)) |
32 | 28, 29, 30, 31 | syl3anc 1318 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → (𝑚 − 𝑁) ∈ (ℤ≥‘𝑗)) |
33 | | simp3 1056 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) |
34 | 33 | ralimi 2936 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) |
35 | | oveq1 6556 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑚 − 𝑁) → (𝑘 + 𝑁) = ((𝑚 − 𝑁) + 𝑁)) |
36 | 35 | fveq2d 6107 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑚 − 𝑁) → (𝐺‘(𝑘 + 𝑁)) = (𝐺‘((𝑚 − 𝑁) + 𝑁))) |
37 | 36 | oveq1d 6564 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑚 − 𝑁) → ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘((𝑚 − 𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁)))) |
38 | 37 | breq1d 4593 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑚 − 𝑁) → (((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 ↔ ((𝐺‘((𝑚 − 𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)) |
39 | 38 | rspcv 3278 |
. . . . . . . . 9
⊢ ((𝑚 − 𝑁) ∈ (ℤ≥‘𝑗) → (∀𝑘 ∈
(ℤ≥‘𝑗)((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 → ((𝐺‘((𝑚 − 𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)) |
40 | 32, 34, 39 | syl2im 39 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘((𝑚 − 𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)) |
41 | | eluzelz 11573 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈
(ℤ≥‘(𝑗 + 𝑁)) → 𝑚 ∈ ℤ) |
42 | 41 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝑚 ∈ ℤ) |
43 | 42 | zcnd 11359 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝑚 ∈ ℂ) |
44 | 20 | zcnd 11359 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℂ) |
45 | 44 | ad2antrr 758 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝑁 ∈ ℂ) |
46 | 43, 45 | npcand 10275 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → ((𝑚 − 𝑁) + 𝑁) = 𝑚) |
47 | 46 | fveq2d 6107 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → (𝐺‘((𝑚 − 𝑁) + 𝑁)) = (𝐺‘𝑚)) |
48 | 47 | oveq1d 6564 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → ((𝐺‘((𝑚 − 𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘𝑚)𝐷(𝐺‘(𝑗 + 𝑁)))) |
49 | 3 | ad2antrr 758 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝐷 ∈ (Met‘𝑋)) |
50 | | caushft.9 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺:𝑊⟶𝑋) |
51 | 50 | ad2antrr 758 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝐺:𝑊⟶𝑋) |
52 | 23 | uztrn2 11581 |
. . . . . . . . . . . . 13
⊢ (((𝑗 + 𝑁) ∈ 𝑊 ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝑚 ∈ 𝑊) |
53 | 24, 52 | sylan 487 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → 𝑚 ∈ 𝑊) |
54 | 51, 53 | ffvelrnd 6268 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → (𝐺‘𝑚) ∈ 𝑋) |
55 | 50 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐺:𝑊⟶𝑋) |
56 | 55, 24 | ffvelrnd 6268 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋) |
57 | 56 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋) |
58 | | metsym 21965 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐺‘𝑚) ∈ 𝑋 ∧ (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋) → ((𝐺‘𝑚)𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺‘𝑚))) |
59 | 49, 54, 57, 58 | syl3anc 1318 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → ((𝐺‘𝑚)𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺‘𝑚))) |
60 | 48, 59 | eqtrd 2644 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → ((𝐺‘((𝑚 − 𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺‘𝑚))) |
61 | 60 | breq1d 4593 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → (((𝐺‘((𝑚 − 𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 ↔ ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺‘𝑚)) < 𝑥)) |
62 | 40, 61 | sylibd 228 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺‘𝑚)) < 𝑥)) |
63 | 62 | ralrimdva 2952 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺‘𝑚)) < 𝑥)) |
64 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑛 = (𝑗 + 𝑁) → (ℤ≥‘𝑛) =
(ℤ≥‘(𝑗 + 𝑁))) |
65 | | fveq2 6103 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑗 + 𝑁) → (𝐺‘𝑛) = (𝐺‘(𝑗 + 𝑁))) |
66 | 65 | oveq1d 6564 |
. . . . . . . . 9
⊢ (𝑛 = (𝑗 + 𝑁) → ((𝐺‘𝑛)𝐷(𝐺‘𝑚)) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺‘𝑚))) |
67 | 66 | breq1d 4593 |
. . . . . . . 8
⊢ (𝑛 = (𝑗 + 𝑁) → (((𝐺‘𝑛)𝐷(𝐺‘𝑚)) < 𝑥 ↔ ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺‘𝑚)) < 𝑥)) |
68 | 64, 67 | raleqbidv 3129 |
. . . . . . 7
⊢ (𝑛 = (𝑗 + 𝑁) → (∀𝑚 ∈ (ℤ≥‘𝑛)((𝐺‘𝑛)𝐷(𝐺‘𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺‘𝑚)) < 𝑥)) |
69 | 68 | rspcev 3282 |
. . . . . 6
⊢ (((𝑗 + 𝑁) ∈ 𝑊 ∧ ∀𝑚 ∈ (ℤ≥‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺‘𝑚)) < 𝑥) → ∃𝑛 ∈ 𝑊 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐺‘𝑛)𝐷(𝐺‘𝑚)) < 𝑥) |
70 | 24, 63, 69 | syl6an 566 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∃𝑛 ∈ 𝑊 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐺‘𝑛)𝐷(𝐺‘𝑚)) < 𝑥)) |
71 | 70 | rexlimdva 3013 |
. . . 4
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∃𝑛 ∈ 𝑊 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐺‘𝑛)𝐷(𝐺‘𝑚)) < 𝑥)) |
72 | 71 | ralimdv 2946 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑊 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐺‘𝑛)𝐷(𝐺‘𝑚)) < 𝑥)) |
73 | 17, 72 | mpd 15 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑊 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐺‘𝑛)𝐷(𝐺‘𝑚)) < 𝑥) |
74 | 6, 20 | zaddcld 11362 |
. . 3
⊢ (𝜑 → (𝑀 + 𝑁) ∈ ℤ) |
75 | | eqidd 2611 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → (𝐺‘𝑚) = (𝐺‘𝑚)) |
76 | | eqidd 2611 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑊) → (𝐺‘𝑛) = (𝐺‘𝑛)) |
77 | 23, 5, 74, 75, 76, 50 | iscauf 22886 |
. 2
⊢ (𝜑 → (𝐺 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑊 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐺‘𝑛)𝐷(𝐺‘𝑚)) < 𝑥)) |
78 | 73, 77 | mpbird 246 |
1
⊢ (𝜑 → 𝐺 ∈ (Cau‘𝐷)) |