Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caushft Structured version   Visualization version   GIF version

Theorem caushft 32727
Description: A shifted Cauchy sequence is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
caures.1 𝑍 = (ℤ𝑀)
caures.3 (𝜑𝑀 ∈ ℤ)
caures.4 (𝜑𝐷 ∈ (Met‘𝑋))
caushft.4 𝑊 = (ℤ‘(𝑀 + 𝑁))
caushft.5 (𝜑𝑁 ∈ ℤ)
caushft.7 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)))
caushft.8 (𝜑𝐹 ∈ (Cau‘𝐷))
caushft.9 (𝜑𝐺:𝑊𝑋)
Assertion
Ref Expression
caushft (𝜑𝐺 ∈ (Cau‘𝐷))
Distinct variable groups:   𝐷,𝑘   𝑘,𝐺   𝜑,𝑘   𝑘,𝑋   𝑘,𝐹   𝑘,𝑁   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑊(𝑘)

Proof of Theorem caushft
Dummy variables 𝑗 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caushft.8 . . . . 5 (𝜑𝐹 ∈ (Cau‘𝐷))
2 caures.1 . . . . . 6 𝑍 = (ℤ𝑀)
3 caures.4 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 21949 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 caures.3 . . . . . 6 (𝜑𝑀 ∈ ℤ)
7 caushft.7 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)))
87ralrimiva 2949 . . . . . . 7 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)))
9 fveq2 6103 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
10 oveq1 6556 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑘 + 𝑁) = (𝑗 + 𝑁))
1110fveq2d 6107 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐺‘(𝑘 + 𝑁)) = (𝐺‘(𝑗 + 𝑁)))
129, 11eqeq12d 2625 . . . . . . . 8 (𝑘 = 𝑗 → ((𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)) ↔ (𝐹𝑗) = (𝐺‘(𝑗 + 𝑁))))
1312rspccva 3281 . . . . . . 7 ((∀𝑘𝑍 (𝐹𝑘) = (𝐺‘(𝑘 + 𝑁)) ∧ 𝑗𝑍) → (𝐹𝑗) = (𝐺‘(𝑗 + 𝑁)))
148, 13sylan 487 . . . . . 6 ((𝜑𝑗𝑍) → (𝐹𝑗) = (𝐺‘(𝑗 + 𝑁)))
152, 5, 6, 7, 14iscau4 22885 . . . . 5 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))))
161, 15mpbid 221 . . . 4 (𝜑 → (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)))
1716simprd 478 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))
182eleq2i 2680 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
1918biimpi 205 . . . . . . . 8 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
20 caushft.5 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
21 eluzadd 11592 . . . . . . . 8 ((𝑗 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝑗 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑁)))
2219, 20, 21syl2anr 494 . . . . . . 7 ((𝜑𝑗𝑍) → (𝑗 + 𝑁) ∈ (ℤ‘(𝑀 + 𝑁)))
23 caushft.4 . . . . . . 7 𝑊 = (ℤ‘(𝑀 + 𝑁))
2422, 23syl6eleqr 2699 . . . . . 6 ((𝜑𝑗𝑍) → (𝑗 + 𝑁) ∈ 𝑊)
25 simplr 788 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑗𝑍)
2625, 2syl6eleq 2698 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑗 ∈ (ℤ𝑀))
27 eluzelz 11573 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
2826, 27syl 17 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑗 ∈ ℤ)
2920ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑁 ∈ ℤ)
30 simpr 476 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚 ∈ (ℤ‘(𝑗 + 𝑁)))
31 eluzsub 11593 . . . . . . . . . 10 ((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝑚𝑁) ∈ (ℤ𝑗))
3228, 29, 30, 31syl3anc 1318 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝑚𝑁) ∈ (ℤ𝑗))
33 simp3 1056 . . . . . . . . . 10 ((𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)
3433ralimi 2936 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥)
35 oveq1 6556 . . . . . . . . . . . . 13 (𝑘 = (𝑚𝑁) → (𝑘 + 𝑁) = ((𝑚𝑁) + 𝑁))
3635fveq2d 6107 . . . . . . . . . . . 12 (𝑘 = (𝑚𝑁) → (𝐺‘(𝑘 + 𝑁)) = (𝐺‘((𝑚𝑁) + 𝑁)))
3736oveq1d 6564 . . . . . . . . . . 11 (𝑘 = (𝑚𝑁) → ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))))
3837breq1d 4593 . . . . . . . . . 10 (𝑘 = (𝑚𝑁) → (((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 ↔ ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))
3938rspcv 3278 . . . . . . . . 9 ((𝑚𝑁) ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 → ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))
4032, 34, 39syl2im 39 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥))
41 eluzelz 11573 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ℤ‘(𝑗 + 𝑁)) → 𝑚 ∈ ℤ)
4241adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚 ∈ ℤ)
4342zcnd 11359 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚 ∈ ℂ)
4420zcnd 11359 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
4544ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑁 ∈ ℂ)
4643, 45npcand 10275 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → ((𝑚𝑁) + 𝑁) = 𝑚)
4746fveq2d 6107 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝐺‘((𝑚𝑁) + 𝑁)) = (𝐺𝑚))
4847oveq1d 6564 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺𝑚)𝐷(𝐺‘(𝑗 + 𝑁))))
493ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝐷 ∈ (Met‘𝑋))
50 caushft.9 . . . . . . . . . . . . 13 (𝜑𝐺:𝑊𝑋)
5150ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝐺:𝑊𝑋)
5223uztrn2 11581 . . . . . . . . . . . . 13 (((𝑗 + 𝑁) ∈ 𝑊𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚𝑊)
5324, 52sylan 487 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → 𝑚𝑊)
5451, 53ffvelrnd 6268 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝐺𝑚) ∈ 𝑋)
5550adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → 𝐺:𝑊𝑋)
5655, 24ffvelrnd 6268 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋)
5756adantr 480 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋)
58 metsym 21965 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐺𝑚) ∈ 𝑋 ∧ (𝐺‘(𝑗 + 𝑁)) ∈ 𝑋) → ((𝐺𝑚)𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)))
5949, 54, 57, 58syl3anc 1318 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → ((𝐺𝑚)𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)))
6048, 59eqtrd 2644 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → ((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)))
6160breq1d 4593 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (((𝐺‘((𝑚𝑁) + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥 ↔ ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
6240, 61sylibd 228 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (ℤ‘(𝑗 + 𝑁))) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
6362ralrimdva 2952 . . . . . 6 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑚 ∈ (ℤ‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
64 fveq2 6103 . . . . . . . 8 (𝑛 = (𝑗 + 𝑁) → (ℤ𝑛) = (ℤ‘(𝑗 + 𝑁)))
65 fveq2 6103 . . . . . . . . . 10 (𝑛 = (𝑗 + 𝑁) → (𝐺𝑛) = (𝐺‘(𝑗 + 𝑁)))
6665oveq1d 6564 . . . . . . . . 9 (𝑛 = (𝑗 + 𝑁) → ((𝐺𝑛)𝐷(𝐺𝑚)) = ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)))
6766breq1d 4593 . . . . . . . 8 (𝑛 = (𝑗 + 𝑁) → (((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥 ↔ ((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
6864, 67raleqbidv 3129 . . . . . . 7 (𝑛 = (𝑗 + 𝑁) → (∀𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥 ↔ ∀𝑚 ∈ (ℤ‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥))
6968rspcev 3282 . . . . . 6 (((𝑗 + 𝑁) ∈ 𝑊 ∧ ∀𝑚 ∈ (ℤ‘(𝑗 + 𝑁))((𝐺‘(𝑗 + 𝑁))𝐷(𝐺𝑚)) < 𝑥) → ∃𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥)
7024, 63, 69syl6an 566 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∃𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥))
7170rexlimdva 3013 . . . 4 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∃𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥))
7271ralimdv 2946 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐺‘(𝑘 + 𝑁)) ∈ 𝑋 ∧ ((𝐺‘(𝑘 + 𝑁))𝐷(𝐺‘(𝑗 + 𝑁))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥))
7317, 72mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥)
746, 20zaddcld 11362 . . 3 (𝜑 → (𝑀 + 𝑁) ∈ ℤ)
75 eqidd 2611 . . 3 ((𝜑𝑚𝑊) → (𝐺𝑚) = (𝐺𝑚))
76 eqidd 2611 . . 3 ((𝜑𝑛𝑊) → (𝐺𝑛) = (𝐺𝑛))
7723, 5, 74, 75, 76, 50iscauf 22886 . 2 (𝜑 → (𝐺 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑛𝑊𝑚 ∈ (ℤ𝑛)((𝐺𝑛)𝐷(𝐺𝑚)) < 𝑥))
7873, 77mpbird 246 1 (𝜑𝐺 ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897   class class class wbr 4583  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549  pm cpm 7745  cc 9813   + caddc 9818   < clt 9953  cmin 10145  cz 11254  cuz 11563  +crp 11708  ∞Metcxmt 19552  Metcme 19553  Caucca 22859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-xneg 11822  df-xadd 11823  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-cau 22862
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator