Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caushft Structured version   Unicode version

Theorem caushft 28660
Description: A shifted Cauchy sequence is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
caures.1  |-  Z  =  ( ZZ>= `  M )
caures.3  |-  ( ph  ->  M  e.  ZZ )
caures.4  |-  ( ph  ->  D  e.  ( Met `  X ) )
caushft.4  |-  W  =  ( ZZ>= `  ( M  +  N ) )
caushft.5  |-  ( ph  ->  N  e.  ZZ )
caushft.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( G `  ( k  +  N
) ) )
caushft.8  |-  ( ph  ->  F  e.  ( Cau `  D ) )
caushft.9  |-  ( ph  ->  G : W --> X )
Assertion
Ref Expression
caushft  |-  ( ph  ->  G  e.  ( Cau `  D ) )
Distinct variable groups:    D, k    k, G    ph, k    k, X   
k, F    k, N    k, Z
Allowed substitution hints:    M( k)    W( k)

Proof of Theorem caushft
Dummy variables  j  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caushft.8 . . . . 5  |-  ( ph  ->  F  e.  ( Cau `  D ) )
2 caures.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
3 caures.4 . . . . . . 7  |-  ( ph  ->  D  e.  ( Met `  X ) )
4 metxmet 19912 . . . . . . 7  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
53, 4syl 16 . . . . . 6  |-  ( ph  ->  D  e.  ( *Met `  X ) )
6 caures.3 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
7 caushft.7 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( G `  ( k  +  N
) ) )
87ralrimiva 2802 . . . . . . 7  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  =  ( G `  ( k  +  N
) ) )
9 fveq2 5694 . . . . . . . . 9  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
10 oveq1 6101 . . . . . . . . . 10  |-  ( k  =  j  ->  (
k  +  N )  =  ( j  +  N ) )
1110fveq2d 5698 . . . . . . . . 9  |-  ( k  =  j  ->  ( G `  ( k  +  N ) )  =  ( G `  (
j  +  N ) ) )
129, 11eqeq12d 2457 . . . . . . . 8  |-  ( k  =  j  ->  (
( F `  k
)  =  ( G `
 ( k  +  N ) )  <->  ( F `  j )  =  ( G `  ( j  +  N ) ) ) )
1312rspccva 3075 . . . . . . 7  |-  ( ( A. k  e.  Z  ( F `  k )  =  ( G `  ( k  +  N
) )  /\  j  e.  Z )  ->  ( F `  j )  =  ( G `  ( j  +  N
) ) )
148, 13sylan 471 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  =  ( G `  ( j  +  N
) ) )
152, 5, 6, 7, 14iscau4 20793 . . . . 5  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( G `  ( k  +  N ) )  e.  X  /\  (
( G `  (
k  +  N ) ) D ( G `
 ( j  +  N ) ) )  <  x ) ) ) )
161, 15mpbid 210 . . . 4  |-  ( ph  ->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( G `  ( k  +  N ) )  e.  X  /\  (
( G `  (
k  +  N ) ) D ( G `
 ( j  +  N ) ) )  <  x ) ) )
1716simprd 463 . . 3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( G `  ( k  +  N ) )  e.  X  /\  (
( G `  (
k  +  N ) ) D ( G `
 ( j  +  N ) ) )  <  x ) )
182eleq2i 2507 . . . . . . . . 9  |-  ( j  e.  Z  <->  j  e.  ( ZZ>= `  M )
)
1918biimpi 194 . . . . . . . 8  |-  ( j  e.  Z  ->  j  e.  ( ZZ>= `  M )
)
20 caushft.5 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
21 eluzadd 10892 . . . . . . . 8  |-  ( ( j  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  (
j  +  N )  e.  ( ZZ>= `  ( M  +  N )
) )
2219, 20, 21syl2anr 478 . . . . . . 7  |-  ( (
ph  /\  j  e.  Z )  ->  (
j  +  N )  e.  ( ZZ>= `  ( M  +  N )
) )
23 caushft.4 . . . . . . 7  |-  W  =  ( ZZ>= `  ( M  +  N ) )
2422, 23syl6eleqr 2534 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  (
j  +  N )  e.  W )
25 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  j  e.  Z
)
2625, 2syl6eleq 2533 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  j  e.  (
ZZ>= `  M ) )
27 eluzelz 10873 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
2826, 27syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  j  e.  ZZ )
2920ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  N  e.  ZZ )
30 simpr 461 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  m  e.  (
ZZ>= `  ( j  +  N ) ) )
31 eluzsub 10893 . . . . . . . . . 10  |-  ( ( j  e.  ZZ  /\  N  e.  ZZ  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( m  -  N )  e.  (
ZZ>= `  j ) )
3228, 29, 30, 31syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( m  -  N )  e.  (
ZZ>= `  j ) )
33 simp3 990 . . . . . . . . . 10  |-  ( ( k  e.  dom  F  /\  ( G `  (
k  +  N ) )  e.  X  /\  ( ( G `  ( k  +  N
) ) D ( G `  ( j  +  N ) ) )  <  x )  ->  ( ( G `
 ( k  +  N ) ) D ( G `  (
j  +  N ) ) )  <  x
)
3433ralimi 2794 . . . . . . . . 9  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( G `  ( k  +  N ) )  e.  X  /\  (
( G `  (
k  +  N ) ) D ( G `
 ( j  +  N ) ) )  <  x )  ->  A. k  e.  ( ZZ>=
`  j ) ( ( G `  (
k  +  N ) ) D ( G `
 ( j  +  N ) ) )  <  x )
35 oveq1 6101 . . . . . . . . . . . . 13  |-  ( k  =  ( m  -  N )  ->  (
k  +  N )  =  ( ( m  -  N )  +  N ) )
3635fveq2d 5698 . . . . . . . . . . . 12  |-  ( k  =  ( m  -  N )  ->  ( G `  ( k  +  N ) )  =  ( G `  (
( m  -  N
)  +  N ) ) )
3736oveq1d 6109 . . . . . . . . . . 11  |-  ( k  =  ( m  -  N )  ->  (
( G `  (
k  +  N ) ) D ( G `
 ( j  +  N ) ) )  =  ( ( G `
 ( ( m  -  N )  +  N ) ) D ( G `  (
j  +  N ) ) ) )
3837breq1d 4305 . . . . . . . . . 10  |-  ( k  =  ( m  -  N )  ->  (
( ( G `  ( k  +  N
) ) D ( G `  ( j  +  N ) ) )  <  x  <->  ( ( G `  ( (
m  -  N )  +  N ) ) D ( G `  ( j  +  N
) ) )  < 
x ) )
3938rspcv 3072 . . . . . . . . 9  |-  ( ( m  -  N )  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( G `  ( k  +  N ) ) D ( G `  ( j  +  N
) ) )  < 
x  ->  ( ( G `  ( (
m  -  N )  +  N ) ) D ( G `  ( j  +  N
) ) )  < 
x ) )
4032, 34, 39syl2im 38 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( G `  ( k  +  N
) )  e.  X  /\  ( ( G `  ( k  +  N
) ) D ( G `  ( j  +  N ) ) )  <  x )  ->  ( ( G `
 ( ( m  -  N )  +  N ) ) D ( G `  (
j  +  N ) ) )  <  x
) )
41 eluzelz 10873 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( ZZ>= `  (
j  +  N ) )  ->  m  e.  ZZ )
4241adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  m  e.  ZZ )
4342zcnd 10751 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  m  e.  CC )
4420zcnd 10751 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  CC )
4544ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  N  e.  CC )
4643, 45npcand 9726 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( ( m  -  N )  +  N )  =  m )
4746fveq2d 5698 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( G `  ( ( m  -  N )  +  N
) )  =  ( G `  m ) )
4847oveq1d 6109 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( ( G `
 ( ( m  -  N )  +  N ) ) D ( G `  (
j  +  N ) ) )  =  ( ( G `  m
) D ( G `
 ( j  +  N ) ) ) )
493ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  D  e.  ( Met `  X ) )
50 caushft.9 . . . . . . . . . . . . 13  |-  ( ph  ->  G : W --> X )
5150ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  G : W --> X )
5223uztrn2 10881 . . . . . . . . . . . . 13  |-  ( ( ( j  +  N
)  e.  W  /\  m  e.  ( ZZ>= `  ( j  +  N
) ) )  ->  m  e.  W )
5324, 52sylan 471 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  m  e.  W
)
5451, 53ffvelrnd 5847 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( G `  m )  e.  X
)
5550adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  Z )  ->  G : W --> X )
5655, 24ffvelrnd 5847 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  Z )  ->  ( G `  ( j  +  N ) )  e.  X )
5756adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( G `  ( j  +  N
) )  e.  X
)
58 metsym 19928 . . . . . . . . . . 11  |-  ( ( D  e.  ( Met `  X )  /\  ( G `  m )  e.  X  /\  ( G `  ( j  +  N ) )  e.  X )  ->  (
( G `  m
) D ( G `
 ( j  +  N ) ) )  =  ( ( G `
 ( j  +  N ) ) D ( G `  m
) ) )
5949, 54, 57, 58syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( ( G `
 m ) D ( G `  (
j  +  N ) ) )  =  ( ( G `  (
j  +  N ) ) D ( G `
 m ) ) )
6048, 59eqtrd 2475 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( ( G `
 ( ( m  -  N )  +  N ) ) D ( G `  (
j  +  N ) ) )  =  ( ( G `  (
j  +  N ) ) D ( G `
 m ) ) )
6160breq1d 4305 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( ( ( G `  ( ( m  -  N )  +  N ) ) D ( G `  ( j  +  N
) ) )  < 
x  <->  ( ( G `
 ( j  +  N ) ) D ( G `  m
) )  <  x
) )
6240, 61sylibd 214 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( G `  ( k  +  N
) )  e.  X  /\  ( ( G `  ( k  +  N
) ) D ( G `  ( j  +  N ) ) )  <  x )  ->  ( ( G `
 ( j  +  N ) ) D ( G `  m
) )  <  x
) )
6362ralrimdva 2809 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( G `  (
k  +  N ) )  e.  X  /\  ( ( G `  ( k  +  N
) ) D ( G `  ( j  +  N ) ) )  <  x )  ->  A. m  e.  (
ZZ>= `  ( j  +  N ) ) ( ( G `  (
j  +  N ) ) D ( G `
 m ) )  <  x ) )
64 fveq2 5694 . . . . . . . 8  |-  ( n  =  ( j  +  N )  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  ( j  +  N ) ) )
65 fveq2 5694 . . . . . . . . . 10  |-  ( n  =  ( j  +  N )  ->  ( G `  n )  =  ( G `  ( j  +  N
) ) )
6665oveq1d 6109 . . . . . . . . 9  |-  ( n  =  ( j  +  N )  ->  (
( G `  n
) D ( G `
 m ) )  =  ( ( G `
 ( j  +  N ) ) D ( G `  m
) ) )
6766breq1d 4305 . . . . . . . 8  |-  ( n  =  ( j  +  N )  ->  (
( ( G `  n ) D ( G `  m ) )  <  x  <->  ( ( G `  ( j  +  N ) ) D ( G `  m
) )  <  x
) )
6864, 67raleqbidv 2934 . . . . . . 7  |-  ( n  =  ( j  +  N )  ->  ( A. m  e.  ( ZZ>=
`  n ) ( ( G `  n
) D ( G `
 m ) )  <  x  <->  A. m  e.  ( ZZ>= `  ( j  +  N ) ) ( ( G `  (
j  +  N ) ) D ( G `
 m ) )  <  x ) )
6968rspcev 3076 . . . . . 6  |-  ( ( ( j  +  N
)  e.  W  /\  A. m  e.  ( ZZ>= `  ( j  +  N
) ) ( ( G `  ( j  +  N ) ) D ( G `  m ) )  < 
x )  ->  E. n  e.  W  A. m  e.  ( ZZ>= `  n )
( ( G `  n ) D ( G `  m ) )  <  x )
7024, 63, 69syl6an 545 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( G `  (
k  +  N ) )  e.  X  /\  ( ( G `  ( k  +  N
) ) D ( G `  ( j  +  N ) ) )  <  x )  ->  E. n  e.  W  A. m  e.  ( ZZ>=
`  n ) ( ( G `  n
) D ( G `
 m ) )  <  x ) )
7170rexlimdva 2844 . . . 4  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( G `  ( k  +  N
) )  e.  X  /\  ( ( G `  ( k  +  N
) ) D ( G `  ( j  +  N ) ) )  <  x )  ->  E. n  e.  W  A. m  e.  ( ZZ>=
`  n ) ( ( G `  n
) D ( G `
 m ) )  <  x ) )
7271ralimdv 2798 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( G `  (
k  +  N ) )  e.  X  /\  ( ( G `  ( k  +  N
) ) D ( G `  ( j  +  N ) ) )  <  x )  ->  A. x  e.  RR+  E. n  e.  W  A. m  e.  ( ZZ>= `  n ) ( ( G `  n ) D ( G `  m ) )  < 
x ) )
7317, 72mpd 15 . 2  |-  ( ph  ->  A. x  e.  RR+  E. n  e.  W  A. m  e.  ( ZZ>= `  n ) ( ( G `  n ) D ( G `  m ) )  < 
x )
746, 20zaddcld 10754 . . 3  |-  ( ph  ->  ( M  +  N
)  e.  ZZ )
75 eqidd 2444 . . 3  |-  ( (
ph  /\  m  e.  W )  ->  ( G `  m )  =  ( G `  m ) )
76 eqidd 2444 . . 3  |-  ( (
ph  /\  n  e.  W )  ->  ( G `  n )  =  ( G `  n ) )
7723, 5, 74, 75, 76, 50iscauf 20794 . 2  |-  ( ph  ->  ( G  e.  ( Cau `  D )  <->  A. x  e.  RR+  E. n  e.  W  A. m  e.  ( ZZ>= `  n )
( ( G `  n ) D ( G `  m ) )  <  x ) )
7873, 77mpbird 232 1  |-  ( ph  ->  G  e.  ( Cau `  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2718   E.wrex 2719   class class class wbr 4295   dom cdm 4843   -->wf 5417   ` cfv 5421  (class class class)co 6094    ^pm cpm 7218   CCcc 9283    + caddc 9288    < clt 9421    - cmin 9598   ZZcz 10649   ZZ>=cuz 10864   RR+crp 10994   *Metcxmt 17804   Metcme 17805   Caucca 20767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-om 6480  df-1st 6580  df-2nd 6581  df-recs 6835  df-rdg 6869  df-er 7104  df-map 7219  df-pm 7220  df-en 7314  df-dom 7315  df-sdom 7316  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-n0 10583  df-z 10650  df-uz 10865  df-rp 10995  df-xneg 11092  df-xadd 11093  df-psmet 17812  df-xmet 17813  df-met 17814  df-bl 17815  df-cau 20770
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator