Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caushft Structured version   Unicode version

Theorem caushft 30230
Description: A shifted Cauchy sequence is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
caures.1  |-  Z  =  ( ZZ>= `  M )
caures.3  |-  ( ph  ->  M  e.  ZZ )
caures.4  |-  ( ph  ->  D  e.  ( Met `  X ) )
caushft.4  |-  W  =  ( ZZ>= `  ( M  +  N ) )
caushft.5  |-  ( ph  ->  N  e.  ZZ )
caushft.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( G `  ( k  +  N
) ) )
caushft.8  |-  ( ph  ->  F  e.  ( Cau `  D ) )
caushft.9  |-  ( ph  ->  G : W --> X )
Assertion
Ref Expression
caushft  |-  ( ph  ->  G  e.  ( Cau `  D ) )
Distinct variable groups:    D, k    k, G    ph, k    k, X   
k, F    k, N    k, Z
Allowed substitution hints:    M( k)    W( k)

Proof of Theorem caushft
Dummy variables  j  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caushft.8 . . . . 5  |-  ( ph  ->  F  e.  ( Cau `  D ) )
2 caures.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
3 caures.4 . . . . . . 7  |-  ( ph  ->  D  e.  ( Met `  X ) )
4 metxmet 20815 . . . . . . 7  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
53, 4syl 16 . . . . . 6  |-  ( ph  ->  D  e.  ( *Met `  X ) )
6 caures.3 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
7 caushft.7 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( G `  ( k  +  N
) ) )
87ralrimiva 2857 . . . . . . 7  |-  ( ph  ->  A. k  e.  Z  ( F `  k )  =  ( G `  ( k  +  N
) ) )
9 fveq2 5856 . . . . . . . . 9  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
10 oveq1 6288 . . . . . . . . . 10  |-  ( k  =  j  ->  (
k  +  N )  =  ( j  +  N ) )
1110fveq2d 5860 . . . . . . . . 9  |-  ( k  =  j  ->  ( G `  ( k  +  N ) )  =  ( G `  (
j  +  N ) ) )
129, 11eqeq12d 2465 . . . . . . . 8  |-  ( k  =  j  ->  (
( F `  k
)  =  ( G `
 ( k  +  N ) )  <->  ( F `  j )  =  ( G `  ( j  +  N ) ) ) )
1312rspccva 3195 . . . . . . 7  |-  ( ( A. k  e.  Z  ( F `  k )  =  ( G `  ( k  +  N
) )  /\  j  e.  Z )  ->  ( F `  j )  =  ( G `  ( j  +  N
) ) )
148, 13sylan 471 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  =  ( G `  ( j  +  N
) ) )
152, 5, 6, 7, 14iscau4 21696 . . . . 5  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( G `  ( k  +  N ) )  e.  X  /\  (
( G `  (
k  +  N ) ) D ( G `
 ( j  +  N ) ) )  <  x ) ) ) )
161, 15mpbid 210 . . . 4  |-  ( ph  ->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( G `  ( k  +  N ) )  e.  X  /\  (
( G `  (
k  +  N ) ) D ( G `
 ( j  +  N ) ) )  <  x ) ) )
1716simprd 463 . . 3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( G `  ( k  +  N ) )  e.  X  /\  (
( G `  (
k  +  N ) ) D ( G `
 ( j  +  N ) ) )  <  x ) )
182eleq2i 2521 . . . . . . . . 9  |-  ( j  e.  Z  <->  j  e.  ( ZZ>= `  M )
)
1918biimpi 194 . . . . . . . 8  |-  ( j  e.  Z  ->  j  e.  ( ZZ>= `  M )
)
20 caushft.5 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
21 eluzadd 11120 . . . . . . . 8  |-  ( ( j  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  (
j  +  N )  e.  ( ZZ>= `  ( M  +  N )
) )
2219, 20, 21syl2anr 478 . . . . . . 7  |-  ( (
ph  /\  j  e.  Z )  ->  (
j  +  N )  e.  ( ZZ>= `  ( M  +  N )
) )
23 caushft.4 . . . . . . 7  |-  W  =  ( ZZ>= `  ( M  +  N ) )
2422, 23syl6eleqr 2542 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  (
j  +  N )  e.  W )
25 simplr 755 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  j  e.  Z
)
2625, 2syl6eleq 2541 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  j  e.  (
ZZ>= `  M ) )
27 eluzelz 11101 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
2826, 27syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  j  e.  ZZ )
2920ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  N  e.  ZZ )
30 simpr 461 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  m  e.  (
ZZ>= `  ( j  +  N ) ) )
31 eluzsub 11121 . . . . . . . . . 10  |-  ( ( j  e.  ZZ  /\  N  e.  ZZ  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( m  -  N )  e.  (
ZZ>= `  j ) )
3228, 29, 30, 31syl3anc 1229 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( m  -  N )  e.  (
ZZ>= `  j ) )
33 simp3 999 . . . . . . . . . 10  |-  ( ( k  e.  dom  F  /\  ( G `  (
k  +  N ) )  e.  X  /\  ( ( G `  ( k  +  N
) ) D ( G `  ( j  +  N ) ) )  <  x )  ->  ( ( G `
 ( k  +  N ) ) D ( G `  (
j  +  N ) ) )  <  x
)
3433ralimi 2836 . . . . . . . . 9  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( G `  ( k  +  N ) )  e.  X  /\  (
( G `  (
k  +  N ) ) D ( G `
 ( j  +  N ) ) )  <  x )  ->  A. k  e.  ( ZZ>=
`  j ) ( ( G `  (
k  +  N ) ) D ( G `
 ( j  +  N ) ) )  <  x )
35 oveq1 6288 . . . . . . . . . . . . 13  |-  ( k  =  ( m  -  N )  ->  (
k  +  N )  =  ( ( m  -  N )  +  N ) )
3635fveq2d 5860 . . . . . . . . . . . 12  |-  ( k  =  ( m  -  N )  ->  ( G `  ( k  +  N ) )  =  ( G `  (
( m  -  N
)  +  N ) ) )
3736oveq1d 6296 . . . . . . . . . . 11  |-  ( k  =  ( m  -  N )  ->  (
( G `  (
k  +  N ) ) D ( G `
 ( j  +  N ) ) )  =  ( ( G `
 ( ( m  -  N )  +  N ) ) D ( G `  (
j  +  N ) ) ) )
3837breq1d 4447 . . . . . . . . . 10  |-  ( k  =  ( m  -  N )  ->  (
( ( G `  ( k  +  N
) ) D ( G `  ( j  +  N ) ) )  <  x  <->  ( ( G `  ( (
m  -  N )  +  N ) ) D ( G `  ( j  +  N
) ) )  < 
x ) )
3938rspcv 3192 . . . . . . . . 9  |-  ( ( m  -  N )  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( G `  ( k  +  N ) ) D ( G `  ( j  +  N
) ) )  < 
x  ->  ( ( G `  ( (
m  -  N )  +  N ) ) D ( G `  ( j  +  N
) ) )  < 
x ) )
4032, 34, 39syl2im 38 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( G `  ( k  +  N
) )  e.  X  /\  ( ( G `  ( k  +  N
) ) D ( G `  ( j  +  N ) ) )  <  x )  ->  ( ( G `
 ( ( m  -  N )  +  N ) ) D ( G `  (
j  +  N ) ) )  <  x
) )
41 eluzelz 11101 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( ZZ>= `  (
j  +  N ) )  ->  m  e.  ZZ )
4241adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  m  e.  ZZ )
4342zcnd 10977 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  m  e.  CC )
4420zcnd 10977 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  CC )
4544ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  N  e.  CC )
4643, 45npcand 9940 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( ( m  -  N )  +  N )  =  m )
4746fveq2d 5860 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( G `  ( ( m  -  N )  +  N
) )  =  ( G `  m ) )
4847oveq1d 6296 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( ( G `
 ( ( m  -  N )  +  N ) ) D ( G `  (
j  +  N ) ) )  =  ( ( G `  m
) D ( G `
 ( j  +  N ) ) ) )
493ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  D  e.  ( Met `  X ) )
50 caushft.9 . . . . . . . . . . . . 13  |-  ( ph  ->  G : W --> X )
5150ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  G : W --> X )
5223uztrn2 11109 . . . . . . . . . . . . 13  |-  ( ( ( j  +  N
)  e.  W  /\  m  e.  ( ZZ>= `  ( j  +  N
) ) )  ->  m  e.  W )
5324, 52sylan 471 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  m  e.  W
)
5451, 53ffvelrnd 6017 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( G `  m )  e.  X
)
5550adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  Z )  ->  G : W --> X )
5655, 24ffvelrnd 6017 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  Z )  ->  ( G `  ( j  +  N ) )  e.  X )
5756adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( G `  ( j  +  N
) )  e.  X
)
58 metsym 20831 . . . . . . . . . . 11  |-  ( ( D  e.  ( Met `  X )  /\  ( G `  m )  e.  X  /\  ( G `  ( j  +  N ) )  e.  X )  ->  (
( G `  m
) D ( G `
 ( j  +  N ) ) )  =  ( ( G `
 ( j  +  N ) ) D ( G `  m
) ) )
5949, 54, 57, 58syl3anc 1229 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( ( G `
 m ) D ( G `  (
j  +  N ) ) )  =  ( ( G `  (
j  +  N ) ) D ( G `
 m ) ) )
6048, 59eqtrd 2484 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( ( G `
 ( ( m  -  N )  +  N ) ) D ( G `  (
j  +  N ) ) )  =  ( ( G `  (
j  +  N ) ) D ( G `
 m ) ) )
6160breq1d 4447 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( ( ( G `  ( ( m  -  N )  +  N ) ) D ( G `  ( j  +  N
) ) )  < 
x  <->  ( ( G `
 ( j  +  N ) ) D ( G `  m
) )  <  x
) )
6240, 61sylibd 214 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  Z )  /\  m  e.  ( ZZ>= `  ( j  +  N ) ) )  ->  ( A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( G `  ( k  +  N
) )  e.  X  /\  ( ( G `  ( k  +  N
) ) D ( G `  ( j  +  N ) ) )  <  x )  ->  ( ( G `
 ( j  +  N ) ) D ( G `  m
) )  <  x
) )
6362ralrimdva 2861 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( G `  (
k  +  N ) )  e.  X  /\  ( ( G `  ( k  +  N
) ) D ( G `  ( j  +  N ) ) )  <  x )  ->  A. m  e.  (
ZZ>= `  ( j  +  N ) ) ( ( G `  (
j  +  N ) ) D ( G `
 m ) )  <  x ) )
64 fveq2 5856 . . . . . . . 8  |-  ( n  =  ( j  +  N )  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  ( j  +  N ) ) )
65 fveq2 5856 . . . . . . . . . 10  |-  ( n  =  ( j  +  N )  ->  ( G `  n )  =  ( G `  ( j  +  N
) ) )
6665oveq1d 6296 . . . . . . . . 9  |-  ( n  =  ( j  +  N )  ->  (
( G `  n
) D ( G `
 m ) )  =  ( ( G `
 ( j  +  N ) ) D ( G `  m
) ) )
6766breq1d 4447 . . . . . . . 8  |-  ( n  =  ( j  +  N )  ->  (
( ( G `  n ) D ( G `  m ) )  <  x  <->  ( ( G `  ( j  +  N ) ) D ( G `  m
) )  <  x
) )
6864, 67raleqbidv 3054 . . . . . . 7  |-  ( n  =  ( j  +  N )  ->  ( A. m  e.  ( ZZ>=
`  n ) ( ( G `  n
) D ( G `
 m ) )  <  x  <->  A. m  e.  ( ZZ>= `  ( j  +  N ) ) ( ( G `  (
j  +  N ) ) D ( G `
 m ) )  <  x ) )
6968rspcev 3196 . . . . . 6  |-  ( ( ( j  +  N
)  e.  W  /\  A. m  e.  ( ZZ>= `  ( j  +  N
) ) ( ( G `  ( j  +  N ) ) D ( G `  m ) )  < 
x )  ->  E. n  e.  W  A. m  e.  ( ZZ>= `  n )
( ( G `  n ) D ( G `  m ) )  <  x )
7024, 63, 69syl6an 545 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( G `  (
k  +  N ) )  e.  X  /\  ( ( G `  ( k  +  N
) ) D ( G `  ( j  +  N ) ) )  <  x )  ->  E. n  e.  W  A. m  e.  ( ZZ>=
`  n ) ( ( G `  n
) D ( G `
 m ) )  <  x ) )
7170rexlimdva 2935 . . . 4  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( G `  ( k  +  N
) )  e.  X  /\  ( ( G `  ( k  +  N
) ) D ( G `  ( j  +  N ) ) )  <  x )  ->  E. n  e.  W  A. m  e.  ( ZZ>=
`  n ) ( ( G `  n
) D ( G `
 m ) )  <  x ) )
7271ralimdv 2853 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( G `  (
k  +  N ) )  e.  X  /\  ( ( G `  ( k  +  N
) ) D ( G `  ( j  +  N ) ) )  <  x )  ->  A. x  e.  RR+  E. n  e.  W  A. m  e.  ( ZZ>= `  n ) ( ( G `  n ) D ( G `  m ) )  < 
x ) )
7317, 72mpd 15 . 2  |-  ( ph  ->  A. x  e.  RR+  E. n  e.  W  A. m  e.  ( ZZ>= `  n ) ( ( G `  n ) D ( G `  m ) )  < 
x )
746, 20zaddcld 10980 . . 3  |-  ( ph  ->  ( M  +  N
)  e.  ZZ )
75 eqidd 2444 . . 3  |-  ( (
ph  /\  m  e.  W )  ->  ( G `  m )  =  ( G `  m ) )
76 eqidd 2444 . . 3  |-  ( (
ph  /\  n  e.  W )  ->  ( G `  n )  =  ( G `  n ) )
7723, 5, 74, 75, 76, 50iscauf 21697 . 2  |-  ( ph  ->  ( G  e.  ( Cau `  D )  <->  A. x  e.  RR+  E. n  e.  W  A. m  e.  ( ZZ>= `  n )
( ( G `  n ) D ( G `  m ) )  <  x ) )
7873, 77mpbird 232 1  |-  ( ph  ->  G  e.  ( Cau `  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   A.wral 2793   E.wrex 2794   class class class wbr 4437   dom cdm 4989   -->wf 5574   ` cfv 5578  (class class class)co 6281    ^pm cpm 7423   CCcc 9493    + caddc 9498    < clt 9631    - cmin 9810   ZZcz 10871   ZZ>=cuz 11092   RR+crp 11231   *Metcxmt 18382   Metcme 18383   Caucca 21670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-er 7313  df-map 7424  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-n0 10803  df-z 10872  df-uz 11093  df-rp 11232  df-xneg 11329  df-xadd 11330  df-psmet 18390  df-xmet 18391  df-met 18392  df-bl 18393  df-cau 21673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator