Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluzsub | Structured version Visualization version GIF version |
Description: Membership in an earlier upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
eluzsub | ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6556 | . . . . . 6 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑀 + 𝐾) = (if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) | |
2 | 1 | fveq2d 6107 | . . . . 5 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ≥‘(𝑀 + 𝐾)) = (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾))) |
3 | 2 | eleq2d 2673 | . . . 4 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) ↔ 𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)))) |
4 | fveq2 6103 | . . . . 5 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ≥‘𝑀) = (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0))) | |
5 | 4 | eleq2d 2673 | . . . 4 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑁 − 𝐾) ∈ (ℤ≥‘𝑀) ↔ (𝑁 − 𝐾) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)))) |
6 | 3, 5 | imbi12d 333 | . . 3 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) ↔ (𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0))))) |
7 | oveq2 6557 | . . . . . 6 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾) = (if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))) | |
8 | 7 | fveq2d 6107 | . . . . 5 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) = (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0)))) |
9 | 8 | eleq2d 2673 | . . . 4 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) ↔ 𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))))) |
10 | oveq2 6557 | . . . . 5 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝑁 − 𝐾) = (𝑁 − if(𝐾 ∈ ℤ, 𝐾, 0))) | |
11 | 10 | eleq1d 2672 | . . . 4 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝑁 − 𝐾) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)) ↔ (𝑁 − if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)))) |
12 | 9, 11 | imbi12d 333 | . . 3 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0))) ↔ (𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))) → (𝑁 − if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0))))) |
13 | 0z 11265 | . . . . 5 ⊢ 0 ∈ ℤ | |
14 | 13 | elimel 4100 | . . . 4 ⊢ if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ |
15 | 13 | elimel 4100 | . . . 4 ⊢ if(𝐾 ∈ ℤ, 𝐾, 0) ∈ ℤ |
16 | 14, 15 | eluzsubi 11591 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))) → (𝑁 − if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0))) |
17 | 6, 12, 16 | dedth2h 4090 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀))) |
18 | 17 | 3impia 1253 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ifcif 4036 ‘cfv 5804 (class class class)co 6549 0cc0 9815 + caddc 9818 − cmin 10145 ℤcz 11254 ℤ≥cuz 11563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 |
This theorem is referenced by: fzoss2 12365 expmulnbnd 12858 shftuz 13657 climshftlem 14153 isumshft 14410 efgredleme 17979 uniioombllem3 23159 ulmshftlem 23947 ulmshft 23948 caushft 32727 uzmptshftfval 37567 stoweidlem14 38907 nnsum4primeseven 40216 nnsum4primesevenALTV 40217 |
Copyright terms: Public domain | W3C validator |