Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  caurcvg2 Structured version   Visualization version   GIF version

Theorem caurcvg2 14256
 Description: A Cauchy sequence of real numbers converges, existence version. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
caucvg.1 𝑍 = (ℤ𝑀)
caurcvg2.2 (𝜑𝐹𝑉)
caurcvg2.3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
Assertion
Ref Expression
caurcvg2 (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑗,𝑘)

Proof of Theorem caurcvg2
Dummy variables 𝑖 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 11712 . . . 4 1 ∈ ℝ+
21ne0ii 3882 . . 3 + ≠ ∅
3 caurcvg2.3 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4 r19.2z 4012 . . 3 ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → ∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
52, 3, 4sylancr 694 . 2 (𝜑 → ∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
6 simpl 472 . . . . . 6 (((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝐹𝑘) ∈ ℝ)
76ralimi 2936 . . . . 5 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)
8 eqid 2610 . . . . . . . . 9 (ℤ𝑗) = (ℤ𝑗)
9 simprr 792 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)
10 fveq2 6103 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
1110eleq1d 2672 . . . . . . . . . . . 12 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑛) ∈ ℝ))
1211rspccva 3281 . . . . . . . . . . 11 ((∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ ℝ)
139, 12sylan 487 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ ℝ)
14 eqid 2610 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) = (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))
1513, 14fmptd 6292 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)):(ℤ𝑗)⟶ℝ)
16 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (ℤ𝑗) = (ℤ𝑚))
17 fveq2 6103 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑚 → (𝐹𝑗) = (𝐹𝑚))
1817oveq2d 6565 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑚 → ((𝐹𝑘) − (𝐹𝑗)) = ((𝐹𝑘) − (𝐹𝑚)))
1918fveq2d 6107 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑚 → (abs‘((𝐹𝑘) − (𝐹𝑗))) = (abs‘((𝐹𝑘) − (𝐹𝑚))))
2019breq1d 4593 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑚 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
2120anbi2d 736 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
2216, 21raleqbidv 3129 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
2322cbvrexv 3148 . . . . . . . . . . . . . . 15 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∃𝑚𝑍𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
24 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
2524eleq1d 2672 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑖) ∈ ℝ))
2624oveq1d 6564 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ((𝐹𝑘) − (𝐹𝑚)) = ((𝐹𝑖) − (𝐹𝑚)))
2726fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (abs‘((𝐹𝑘) − (𝐹𝑚))) = (abs‘((𝐹𝑖) − (𝐹𝑚))))
2827breq1d 4593 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 ↔ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
2925, 28anbi12d 743 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) ↔ ((𝐹𝑖) ∈ ℝ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥)))
3029cbvralv 3147 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) ↔ ∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℝ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
31 recn 9905 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑖) ∈ ℝ → (𝐹𝑖) ∈ ℂ)
3231anim1i 590 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑖) ∈ ℝ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3332ralimi 2936 . . . . . . . . . . . . . . . . 17 (∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℝ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3430, 33sylbi 206 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → ∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3534reximi 2994 . . . . . . . . . . . . . . 15 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3623, 35sylbi 206 . . . . . . . . . . . . . 14 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3736ralimi 2936 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
383, 37syl 17 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3938adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
40 caucvg.1 . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
4140, 8cau4 13944 . . . . . . . . . . . 12 (𝑗𝑍 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥)))
4241ad2antrl 760 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → (∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥)))
4339, 42mpbid 221 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
44 simpr 476 . . . . . . . . . . . . . 14 (((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥)
458uztrn2 11581 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → 𝑖 ∈ (ℤ𝑗))
46 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑖 → (𝐹𝑛) = (𝐹𝑖))
47 fvex 6113 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑖) ∈ V
4846, 14, 47fvmpt 6191 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (ℤ𝑗) → ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) = (𝐹𝑖))
4945, 48syl 17 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) = (𝐹𝑖))
50 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
51 fvex 6113 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑚) ∈ V
5250, 14, 51fvmpt 6191 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑗) → ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚) = (𝐹𝑚))
5352adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚) = (𝐹𝑚))
5449, 53oveq12d 6567 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → (((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚)) = ((𝐹𝑖) − (𝐹𝑚)))
5554fveq2d 6107 . . . . . . . . . . . . . . 15 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → (abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) = (abs‘((𝐹𝑖) − (𝐹𝑚))))
5655breq1d 4593 . . . . . . . . . . . . . 14 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → ((abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥 ↔ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
5744, 56syl5ibr 235 . . . . . . . . . . . . 13 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → (((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → (abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥))
5857ralimdva 2945 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ𝑗) → (∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ∀𝑖 ∈ (ℤ𝑚)(abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥))
5958reximia 2992 . . . . . . . . . . 11 (∃𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)(abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥)
6059ralimi 2936 . . . . . . . . . 10 (∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)(abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥)
6143, 60syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)(abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥)
628, 15, 61caurcvg 14255 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))))
63 eluzelz 11573 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
6463, 40eleq2s 2706 . . . . . . . . . 10 (𝑗𝑍𝑗 ∈ ℤ)
6564ad2antrl 760 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → 𝑗 ∈ ℤ)
66 caurcvg2.2 . . . . . . . . . 10 (𝜑𝐹𝑉)
6766adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → 𝐹𝑉)
68 fveq2 6103 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
6968cbvmptv 4678 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) = (𝑘 ∈ (ℤ𝑗) ↦ (𝐹𝑘))
708, 69climmpt 14150 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))) ↔ (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)))))
7165, 67, 70syl2anc 691 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → (𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))) ↔ (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)))))
7262, 71mpbird 246 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → 𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))))
73 climrel 14071 . . . . . . . 8 Rel ⇝
7473releldmi 5283 . . . . . . 7 (𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))) → 𝐹 ∈ dom ⇝ )
7572, 74syl 17 . . . . . 6 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → 𝐹 ∈ dom ⇝ )
7675expr 641 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ → 𝐹 ∈ dom ⇝ ))
777, 76syl5 33 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → 𝐹 ∈ dom ⇝ ))
7877rexlimdva 3013 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → 𝐹 ∈ dom ⇝ ))
7978rexlimdvw 3016 . 2 (𝜑 → (∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → 𝐹 ∈ dom ⇝ ))
805, 79mpd 15 1 (𝜑𝐹 ∈ dom ⇝ )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  ∅c0 3874   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  1c1 9816   < clt 9953   − cmin 10145  ℤcz 11254  ℤ≥cuz 11563  ℝ+crp 11708  abscabs 13822  lim supclsp 14049   ⇝ cli 14063 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fl 12455  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068 This theorem is referenced by:  iseralt  14263  cvgcmp  14389
 Copyright terms: Public domain W3C validator