MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caurcvg2 Structured version   Visualization version   GIF version

Theorem caurcvg2 14256
Description: A Cauchy sequence of real numbers converges, existence version. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
caucvg.1 𝑍 = (ℤ𝑀)
caurcvg2.2 (𝜑𝐹𝑉)
caurcvg2.3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
Assertion
Ref Expression
caurcvg2 (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑗,𝑘)

Proof of Theorem caurcvg2
Dummy variables 𝑖 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 11712 . . . 4 1 ∈ ℝ+
21ne0ii 3882 . . 3 + ≠ ∅
3 caurcvg2.3 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4 r19.2z 4012 . . 3 ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → ∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
52, 3, 4sylancr 694 . 2 (𝜑 → ∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
6 simpl 472 . . . . . 6 (((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝐹𝑘) ∈ ℝ)
76ralimi 2936 . . . . 5 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)
8 eqid 2610 . . . . . . . . 9 (ℤ𝑗) = (ℤ𝑗)
9 simprr 792 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)
10 fveq2 6103 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
1110eleq1d 2672 . . . . . . . . . . . 12 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑛) ∈ ℝ))
1211rspccva 3281 . . . . . . . . . . 11 ((∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ ℝ)
139, 12sylan 487 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ ℝ)
14 eqid 2610 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) = (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))
1513, 14fmptd 6292 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)):(ℤ𝑗)⟶ℝ)
16 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (ℤ𝑗) = (ℤ𝑚))
17 fveq2 6103 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑚 → (𝐹𝑗) = (𝐹𝑚))
1817oveq2d 6565 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑚 → ((𝐹𝑘) − (𝐹𝑗)) = ((𝐹𝑘) − (𝐹𝑚)))
1918fveq2d 6107 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑚 → (abs‘((𝐹𝑘) − (𝐹𝑗))) = (abs‘((𝐹𝑘) − (𝐹𝑚))))
2019breq1d 4593 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑚 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
2120anbi2d 736 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
2216, 21raleqbidv 3129 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
2322cbvrexv 3148 . . . . . . . . . . . . . . 15 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∃𝑚𝑍𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
24 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
2524eleq1d 2672 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑖) ∈ ℝ))
2624oveq1d 6564 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ((𝐹𝑘) − (𝐹𝑚)) = ((𝐹𝑖) − (𝐹𝑚)))
2726fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (abs‘((𝐹𝑘) − (𝐹𝑚))) = (abs‘((𝐹𝑖) − (𝐹𝑚))))
2827breq1d 4593 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 ↔ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
2925, 28anbi12d 743 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) ↔ ((𝐹𝑖) ∈ ℝ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥)))
3029cbvralv 3147 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) ↔ ∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℝ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
31 recn 9905 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑖) ∈ ℝ → (𝐹𝑖) ∈ ℂ)
3231anim1i 590 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑖) ∈ ℝ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3332ralimi 2936 . . . . . . . . . . . . . . . . 17 (∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℝ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3430, 33sylbi 206 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → ∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3534reximi 2994 . . . . . . . . . . . . . . 15 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3623, 35sylbi 206 . . . . . . . . . . . . . 14 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3736ralimi 2936 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
383, 37syl 17 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3938adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
40 caucvg.1 . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
4140, 8cau4 13944 . . . . . . . . . . . 12 (𝑗𝑍 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥)))
4241ad2antrl 760 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → (∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥)))
4339, 42mpbid 221 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
44 simpr 476 . . . . . . . . . . . . . 14 (((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥)
458uztrn2 11581 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → 𝑖 ∈ (ℤ𝑗))
46 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑖 → (𝐹𝑛) = (𝐹𝑖))
47 fvex 6113 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑖) ∈ V
4846, 14, 47fvmpt 6191 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (ℤ𝑗) → ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) = (𝐹𝑖))
4945, 48syl 17 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) = (𝐹𝑖))
50 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
51 fvex 6113 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑚) ∈ V
5250, 14, 51fvmpt 6191 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑗) → ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚) = (𝐹𝑚))
5352adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚) = (𝐹𝑚))
5449, 53oveq12d 6567 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → (((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚)) = ((𝐹𝑖) − (𝐹𝑚)))
5554fveq2d 6107 . . . . . . . . . . . . . . 15 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → (abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) = (abs‘((𝐹𝑖) − (𝐹𝑚))))
5655breq1d 4593 . . . . . . . . . . . . . 14 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → ((abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥 ↔ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
5744, 56syl5ibr 235 . . . . . . . . . . . . 13 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → (((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → (abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥))
5857ralimdva 2945 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ𝑗) → (∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ∀𝑖 ∈ (ℤ𝑚)(abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥))
5958reximia 2992 . . . . . . . . . . 11 (∃𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)(abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥)
6059ralimi 2936 . . . . . . . . . 10 (∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)(abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥)
6143, 60syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)(abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥)
628, 15, 61caurcvg 14255 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))))
63 eluzelz 11573 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
6463, 40eleq2s 2706 . . . . . . . . . 10 (𝑗𝑍𝑗 ∈ ℤ)
6564ad2antrl 760 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → 𝑗 ∈ ℤ)
66 caurcvg2.2 . . . . . . . . . 10 (𝜑𝐹𝑉)
6766adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → 𝐹𝑉)
68 fveq2 6103 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
6968cbvmptv 4678 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) = (𝑘 ∈ (ℤ𝑗) ↦ (𝐹𝑘))
708, 69climmpt 14150 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))) ↔ (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)))))
7165, 67, 70syl2anc 691 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → (𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))) ↔ (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)))))
7262, 71mpbird 246 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → 𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))))
73 climrel 14071 . . . . . . . 8 Rel ⇝
7473releldmi 5283 . . . . . . 7 (𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))) → 𝐹 ∈ dom ⇝ )
7572, 74syl 17 . . . . . 6 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → 𝐹 ∈ dom ⇝ )
7675expr 641 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ → 𝐹 ∈ dom ⇝ ))
777, 76syl5 33 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → 𝐹 ∈ dom ⇝ ))
7877rexlimdva 3013 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → 𝐹 ∈ dom ⇝ ))
7978rexlimdvw 3016 . 2 (𝜑 → (∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → 𝐹 ∈ dom ⇝ ))
805, 79mpd 15 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  c0 3874   class class class wbr 4583  cmpt 4643  dom cdm 5038  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  1c1 9816   < clt 9953  cmin 10145  cz 11254  cuz 11563  +crp 11708  abscabs 13822  lim supclsp 14049  cli 14063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fl 12455  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068
This theorem is referenced by:  iseralt  14263  cvgcmp  14389
  Copyright terms: Public domain W3C validator