MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caurcvg2 Structured version   Unicode version

Theorem caurcvg2 13512
Description: A Cauchy sequence of real numbers converges, existence version. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
caucvg.1  |-  Z  =  ( ZZ>= `  M )
caurcvg2.2  |-  ( ph  ->  F  e.  V )
caurcvg2.3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  RR  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )
Assertion
Ref Expression
caurcvg2  |-  ( ph  ->  F  e.  dom  ~~>  )
Distinct variable groups:    j, k, x, F    j, M, k, x    ph, j, k, x   
j, Z, k, x
Allowed substitution hints:    V( x, j, k)

Proof of Theorem caurcvg2
Dummy variables  i  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 11249 . . . 4  |-  1  e.  RR+
21ne0ii 3800 . . 3  |-  RR+  =/=  (/)
3 caurcvg2.3 . . 3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  RR  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )
4 r19.2z 3921 . . 3  |-  ( (
RR+  =/=  (/)  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  RR  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )  ->  E. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  RR  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
52, 3, 4sylancr 663 . 2  |-  ( ph  ->  E. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  RR  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )
6 simpl 457 . . . . . 6  |-  ( ( ( F `  k
)  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  -> 
( F `  k
)  e.  RR )
76ralimi 2850 . . . . 5  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  RR  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  ->  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  RR )
8 eqid 2457 . . . . . . . . 9  |-  ( ZZ>= `  j )  =  (
ZZ>= `  j )
9 simprr 757 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  RR ) )  ->  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  RR )
10 fveq2 5872 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
1110eleq1d 2526 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
( F `  k
)  e.  RR  <->  ( F `  n )  e.  RR ) )
1211rspccva 3209 . . . . . . . . . . 11  |-  ( ( A. k  e.  (
ZZ>= `  j ) ( F `  k )  e.  RR  /\  n  e.  ( ZZ>= `  j )
)  ->  ( F `  n )  e.  RR )
139, 12sylan 471 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  RR ) )  /\  n  e.  ( ZZ>= `  j ) )  -> 
( F `  n
)  e.  RR )
14 eqid 2457 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  j
)  |->  ( F `  n ) )  =  ( n  e.  (
ZZ>= `  j )  |->  ( F `  n ) )
1513, 14fmptd 6056 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  RR ) )  ->  ( n  e.  ( ZZ>= `  j )  |->  ( F `  n
) ) : (
ZZ>= `  j ) --> RR )
16 fveq2 5872 . . . . . . . . . . . . . . . . 17  |-  ( j  =  m  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  m )
)
17 fveq2 5872 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  =  m  ->  ( F `  j )  =  ( F `  m ) )
1817oveq2d 6312 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  =  m  ->  (
( F `  k
)  -  ( F `
 j ) )  =  ( ( F `
 k )  -  ( F `  m ) ) )
1918fveq2d 5876 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  m  ->  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  =  ( abs `  ( ( F `  k )  -  ( F `  m ) ) ) )
2019breq1d 4466 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  m  ->  (
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  <->  ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x
) )
2120anbi2d 703 . . . . . . . . . . . . . . . . 17  |-  ( j  =  m  ->  (
( ( F `  k )  e.  RR  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <-> 
( ( F `  k )  e.  RR  /\  ( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x ) ) )
2216, 21raleqbidv 3068 . . . . . . . . . . . . . . . 16  |-  ( j  =  m  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  <->  A. k  e.  ( ZZ>= `  m )
( ( F `  k )  e.  RR  /\  ( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x ) ) )
2322cbvrexv 3085 . . . . . . . . . . . . . . 15  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  RR  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  <->  E. m  e.  Z  A. k  e.  ( ZZ>=
`  m ) ( ( F `  k
)  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  m ) ) )  <  x ) )
24 fveq2 5872 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  i  ->  ( F `  k )  =  ( F `  i ) )
2524eleq1d 2526 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  i  ->  (
( F `  k
)  e.  RR  <->  ( F `  i )  e.  RR ) )
2624oveq1d 6311 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  i  ->  (
( F `  k
)  -  ( F `
 m ) )  =  ( ( F `
 i )  -  ( F `  m ) ) )
2726fveq2d 5876 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  i  ->  ( abs `  ( ( F `
 k )  -  ( F `  m ) ) )  =  ( abs `  ( ( F `  i )  -  ( F `  m ) ) ) )
2827breq1d 4466 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  i  ->  (
( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x  <->  ( abs `  ( ( F `  i )  -  ( F `  m )
) )  <  x
) )
2925, 28anbi12d 710 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  i  ->  (
( ( F `  k )  e.  RR  /\  ( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x )  <-> 
( ( F `  i )  e.  RR  /\  ( abs `  (
( F `  i
)  -  ( F `
 m ) ) )  <  x ) ) )
3029cbvralv 3084 . . . . . . . . . . . . . . . . 17  |-  ( A. k  e.  ( ZZ>= `  m ) ( ( F `  k )  e.  RR  /\  ( abs `  ( ( F `
 k )  -  ( F `  m ) ) )  <  x
)  <->  A. i  e.  (
ZZ>= `  m ) ( ( F `  i
)  e.  RR  /\  ( abs `  ( ( F `  i )  -  ( F `  m ) ) )  <  x ) )
31 recn 9599 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F `  i )  e.  RR  ->  ( F `  i )  e.  CC )
3231anim1i 568 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F `  i
)  e.  RR  /\  ( abs `  ( ( F `  i )  -  ( F `  m ) ) )  <  x )  -> 
( ( F `  i )  e.  CC  /\  ( abs `  (
( F `  i
)  -  ( F `
 m ) ) )  <  x ) )
3332ralimi 2850 . . . . . . . . . . . . . . . . 17  |-  ( A. i  e.  ( ZZ>= `  m ) ( ( F `  i )  e.  RR  /\  ( abs `  ( ( F `
 i )  -  ( F `  m ) ) )  <  x
)  ->  A. i  e.  ( ZZ>= `  m )
( ( F `  i )  e.  CC  /\  ( abs `  (
( F `  i
)  -  ( F `
 m ) ) )  <  x ) )
3430, 33sylbi 195 . . . . . . . . . . . . . . . 16  |-  ( A. k  e.  ( ZZ>= `  m ) ( ( F `  k )  e.  RR  /\  ( abs `  ( ( F `
 k )  -  ( F `  m ) ) )  <  x
)  ->  A. i  e.  ( ZZ>= `  m )
( ( F `  i )  e.  CC  /\  ( abs `  (
( F `  i
)  -  ( F `
 m ) ) )  <  x ) )
3534reximi 2925 . . . . . . . . . . . . . . 15  |-  ( E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ( ( F `  k )  e.  RR  /\  ( abs `  ( ( F `
 k )  -  ( F `  m ) ) )  <  x
)  ->  E. m  e.  Z  A. i  e.  ( ZZ>= `  m )
( ( F `  i )  e.  CC  /\  ( abs `  (
( F `  i
)  -  ( F `
 m ) ) )  <  x ) )
3623, 35sylbi 195 . . . . . . . . . . . . . 14  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  RR  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  ->  E. m  e.  Z  A. i  e.  ( ZZ>= `  m )
( ( F `  i )  e.  CC  /\  ( abs `  (
( F `  i
)  -  ( F `
 m ) ) )  <  x ) )
3736ralimi 2850 . . . . . . . . . . . . 13  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  RR  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  A. x  e.  RR+  E. m  e.  Z  A. i  e.  ( ZZ>= `  m ) ( ( F `  i )  e.  CC  /\  ( abs `  ( ( F `
 i )  -  ( F `  m ) ) )  <  x
) )
383, 37syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  RR+  E. m  e.  Z  A. i  e.  ( ZZ>= `  m ) ( ( F `  i )  e.  CC  /\  ( abs `  ( ( F `
 i )  -  ( F `  m ) ) )  <  x
) )
3938adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  RR ) )  ->  A. x  e.  RR+  E. m  e.  Z  A. i  e.  ( ZZ>= `  m )
( ( F `  i )  e.  CC  /\  ( abs `  (
( F `  i
)  -  ( F `
 m ) ) )  <  x ) )
40 caucvg.1 . . . . . . . . . . . . 13  |-  Z  =  ( ZZ>= `  M )
4140, 8cau4 13201 . . . . . . . . . . . 12  |-  ( j  e.  Z  ->  ( A. x  e.  RR+  E. m  e.  Z  A. i  e.  ( ZZ>= `  m )
( ( F `  i )  e.  CC  /\  ( abs `  (
( F `  i
)  -  ( F `
 m ) ) )  <  x )  <->  A. x  e.  RR+  E. m  e.  ( ZZ>= `  j ) A. i  e.  ( ZZ>=
`  m ) ( ( F `  i
)  e.  CC  /\  ( abs `  ( ( F `  i )  -  ( F `  m ) ) )  <  x ) ) )
4241ad2antrl 727 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  RR ) )  ->  ( A. x  e.  RR+  E. m  e.  Z  A. i  e.  ( ZZ>= `  m )
( ( F `  i )  e.  CC  /\  ( abs `  (
( F `  i
)  -  ( F `
 m ) ) )  <  x )  <->  A. x  e.  RR+  E. m  e.  ( ZZ>= `  j ) A. i  e.  ( ZZ>=
`  m ) ( ( F `  i
)  e.  CC  /\  ( abs `  ( ( F `  i )  -  ( F `  m ) ) )  <  x ) ) )
4339, 42mpbid 210 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  RR ) )  ->  A. x  e.  RR+  E. m  e.  ( ZZ>= `  j ) A. i  e.  ( ZZ>=
`  m ) ( ( F `  i
)  e.  CC  /\  ( abs `  ( ( F `  i )  -  ( F `  m ) ) )  <  x ) )
44 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( F `  i
)  e.  CC  /\  ( abs `  ( ( F `  i )  -  ( F `  m ) ) )  <  x )  -> 
( abs `  (
( F `  i
)  -  ( F `
 m ) ) )  <  x )
458uztrn2 11123 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  e.  ( ZZ>= `  j )  /\  i  e.  ( ZZ>= `  m )
)  ->  i  e.  ( ZZ>= `  j )
)
46 fveq2 5872 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  i  ->  ( F `  n )  =  ( F `  i ) )
47 fvex 5882 . . . . . . . . . . . . . . . . . . 19  |-  ( F `
 i )  e. 
_V
4846, 14, 47fvmpt 5956 . . . . . . . . . . . . . . . . . 18  |-  ( i  e.  ( ZZ>= `  j
)  ->  ( (
n  e.  ( ZZ>= `  j )  |->  ( F `
 n ) ) `
 i )  =  ( F `  i
) )
4945, 48syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( m  e.  ( ZZ>= `  j )  /\  i  e.  ( ZZ>= `  m )
)  ->  ( (
n  e.  ( ZZ>= `  j )  |->  ( F `
 n ) ) `
 i )  =  ( F `  i
) )
50 fveq2 5872 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  m  ->  ( F `  n )  =  ( F `  m ) )
51 fvex 5882 . . . . . . . . . . . . . . . . . . 19  |-  ( F `
 m )  e. 
_V
5250, 14, 51fvmpt 5956 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( (
n  e.  ( ZZ>= `  j )  |->  ( F `
 n ) ) `
 m )  =  ( F `  m
) )
5352adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( m  e.  ( ZZ>= `  j )  /\  i  e.  ( ZZ>= `  m )
)  ->  ( (
n  e.  ( ZZ>= `  j )  |->  ( F `
 n ) ) `
 m )  =  ( F `  m
) )
5449, 53oveq12d 6314 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  ( ZZ>= `  j )  /\  i  e.  ( ZZ>= `  m )
)  ->  ( (
( n  e.  (
ZZ>= `  j )  |->  ( F `  n ) ) `  i )  -  ( ( n  e.  ( ZZ>= `  j
)  |->  ( F `  n ) ) `  m ) )  =  ( ( F `  i )  -  ( F `  m )
) )
5554fveq2d 5876 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  ( ZZ>= `  j )  /\  i  e.  ( ZZ>= `  m )
)  ->  ( abs `  ( ( ( n  e.  ( ZZ>= `  j
)  |->  ( F `  n ) ) `  i )  -  (
( n  e.  (
ZZ>= `  j )  |->  ( F `  n ) ) `  m ) ) )  =  ( abs `  ( ( F `  i )  -  ( F `  m ) ) ) )
5655breq1d 4466 . . . . . . . . . . . . . 14  |-  ( ( m  e.  ( ZZ>= `  j )  /\  i  e.  ( ZZ>= `  m )
)  ->  ( ( abs `  ( ( ( n  e.  ( ZZ>= `  j )  |->  ( F `
 n ) ) `
 i )  -  ( ( n  e.  ( ZZ>= `  j )  |->  ( F `  n
) ) `  m
) ) )  < 
x  <->  ( abs `  (
( F `  i
)  -  ( F `
 m ) ) )  <  x ) )
5744, 56syl5ibr 221 . . . . . . . . . . . . 13  |-  ( ( m  e.  ( ZZ>= `  j )  /\  i  e.  ( ZZ>= `  m )
)  ->  ( (
( F `  i
)  e.  CC  /\  ( abs `  ( ( F `  i )  -  ( F `  m ) ) )  <  x )  -> 
( abs `  (
( ( n  e.  ( ZZ>= `  j )  |->  ( F `  n
) ) `  i
)  -  ( ( n  e.  ( ZZ>= `  j )  |->  ( F `
 n ) ) `
 m ) ) )  <  x ) )
5857ralimdva 2865 . . . . . . . . . . . 12  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( A. i  e.  ( ZZ>= `  m ) ( ( F `  i )  e.  CC  /\  ( abs `  ( ( F `
 i )  -  ( F `  m ) ) )  <  x
)  ->  A. i  e.  ( ZZ>= `  m )
( abs `  (
( ( n  e.  ( ZZ>= `  j )  |->  ( F `  n
) ) `  i
)  -  ( ( n  e.  ( ZZ>= `  j )  |->  ( F `
 n ) ) `
 m ) ) )  <  x ) )
5958reximia 2923 . . . . . . . . . . 11  |-  ( E. m  e.  ( ZZ>= `  j ) A. i  e.  ( ZZ>= `  m )
( ( F `  i )  e.  CC  /\  ( abs `  (
( F `  i
)  -  ( F `
 m ) ) )  <  x )  ->  E. m  e.  (
ZZ>= `  j ) A. i  e.  ( ZZ>= `  m ) ( abs `  ( ( ( n  e.  ( ZZ>= `  j
)  |->  ( F `  n ) ) `  i )  -  (
( n  e.  (
ZZ>= `  j )  |->  ( F `  n ) ) `  m ) ) )  <  x
)
6059ralimi 2850 . . . . . . . . . 10  |-  ( A. x  e.  RR+  E. m  e.  ( ZZ>= `  j ) A. i  e.  ( ZZ>=
`  m ) ( ( F `  i
)  e.  CC  /\  ( abs `  ( ( F `  i )  -  ( F `  m ) ) )  <  x )  ->  A. x  e.  RR+  E. m  e.  ( ZZ>= `  j ) A. i  e.  ( ZZ>=
`  m ) ( abs `  ( ( ( n  e.  (
ZZ>= `  j )  |->  ( F `  n ) ) `  i )  -  ( ( n  e.  ( ZZ>= `  j
)  |->  ( F `  n ) ) `  m ) ) )  <  x )
6143, 60syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  RR ) )  ->  A. x  e.  RR+  E. m  e.  ( ZZ>= `  j ) A. i  e.  ( ZZ>=
`  m ) ( abs `  ( ( ( n  e.  (
ZZ>= `  j )  |->  ( F `  n ) ) `  i )  -  ( ( n  e.  ( ZZ>= `  j
)  |->  ( F `  n ) ) `  m ) ) )  <  x )
628, 15, 61caurcvg 13511 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  RR ) )  ->  ( n  e.  ( ZZ>= `  j )  |->  ( F `  n
) )  ~~>  ( limsup `  ( n  e.  (
ZZ>= `  j )  |->  ( F `  n ) ) ) )
63 eluzelz 11115 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
6463, 40eleq2s 2565 . . . . . . . . . 10  |-  ( j  e.  Z  ->  j  e.  ZZ )
6564ad2antrl 727 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  RR ) )  ->  j  e.  ZZ )
66 caurcvg2.2 . . . . . . . . . 10  |-  ( ph  ->  F  e.  V )
6766adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  RR ) )  ->  F  e.  V )
68 fveq2 5872 . . . . . . . . . . 11  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
6968cbvmptv 4548 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  j
)  |->  ( F `  n ) )  =  ( k  e.  (
ZZ>= `  j )  |->  ( F `  k ) )
708, 69climmpt 13406 . . . . . . . . 9  |-  ( ( j  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  ( limsup `  ( n  e.  (
ZZ>= `  j )  |->  ( F `  n ) ) )  <->  ( n  e.  ( ZZ>= `  j )  |->  ( F `  n
) )  ~~>  ( limsup `  ( n  e.  (
ZZ>= `  j )  |->  ( F `  n ) ) ) ) )
7165, 67, 70syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  RR ) )  ->  ( F  ~~>  ( limsup `  ( n  e.  ( ZZ>= `  j )  |->  ( F `  n
) ) )  <->  ( n  e.  ( ZZ>= `  j )  |->  ( F `  n
) )  ~~>  ( limsup `  ( n  e.  (
ZZ>= `  j )  |->  ( F `  n ) ) ) ) )
7262, 71mpbird 232 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  RR ) )  ->  F  ~~>  ( limsup `  ( n  e.  (
ZZ>= `  j )  |->  ( F `  n ) ) ) )
73 climrel 13327 . . . . . . . 8  |-  Rel  ~~>
7473releldmi 5249 . . . . . . 7  |-  ( F  ~~>  ( limsup `  ( n  e.  ( ZZ>= `  j )  |->  ( F `  n
) ) )  ->  F  e.  dom  ~~>  )
7572, 74syl 16 . . . . . 6  |-  ( (
ph  /\  ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  RR ) )  ->  F  e.  dom 
~~>  )
7675expr 615 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  RR  ->  F  e.  dom  ~~>  ) )
777, 76syl5 32 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  ->  F  e.  dom  ~~>  ) )
7877rexlimdva 2949 . . 3  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  RR  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  F  e.  dom  ~~>  ) )
7978rexlimdvw 2952 . 2  |-  ( ph  ->  ( E. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  ->  F  e.  dom  ~~>  ) )
805, 79mpd 15 1  |-  ( ph  ->  F  e.  dom  ~~>  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   E.wrex 2808   (/)c0 3793   class class class wbr 4456    |-> cmpt 4515   dom cdm 5008   ` cfv 5594  (class class class)co 6296   CCcc 9507   RRcr 9508   1c1 9510    < clt 9645    - cmin 9824   ZZcz 10885   ZZ>=cuz 11106   RR+crp 11245   abscabs 13079   limsupclsp 13305    ~~> cli 13319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-ico 11560  df-fl 11932  df-seq 12111  df-exp 12170  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-limsup 13306  df-clim 13323  df-rlim 13324
This theorem is referenced by:  iseralt  13519  cvgcmp  13642
  Copyright terms: Public domain W3C validator