Step | Hyp | Ref
| Expression |
1 | | cvgcmp.1 |
. 2
⊢ 𝑍 =
(ℤ≥‘𝑀) |
2 | | seqex 12665 |
. . 3
⊢ seq𝑀( + , 𝐺) ∈ V |
3 | 2 | a1i 11 |
. 2
⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ V) |
4 | | cvgcmp.2 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ 𝑍) |
5 | 4, 1 | syl6eleq 2698 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
6 | | eluzel2 11568 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
7 | 5, 6 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
8 | | cvgcmp.5 |
. . . . . 6
⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
9 | 1 | climcau 14249 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+
∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) |
10 | 7, 8, 9 | syl2anc 691 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) |
11 | | cvgcmp.3 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
12 | 1, 7, 11 | serfre 12692 |
. . . . . . . . . 10
⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ) |
13 | 12 | ffvelrnda 6267 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ) |
14 | 13 | recnd 9947 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ) |
15 | 14 | ralrimiva 2949 |
. . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ) |
16 | 1 | r19.29uz 13938 |
. . . . . . . 8
⊢
((∀𝑛 ∈
𝑍 (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)) |
17 | 16 | ex 449 |
. . . . . . 7
⊢
(∀𝑛 ∈
𝑍 (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ → (∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥))) |
18 | 15, 17 | syl 17 |
. . . . . 6
⊢ (𝜑 → (∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥))) |
19 | 18 | ralimdv 2946 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥))) |
20 | 10, 19 | mpd 15 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)) |
21 | 1 | uztrn2 11581 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ 𝑍) |
22 | 4, 21 | sylan 487 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ 𝑍) |
23 | | cvgcmp.4 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) |
24 | 1, 7, 23 | serfre 12692 |
. . . . . . . . . . . 12
⊢ (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ) |
25 | 24 | ffvelrnda 6267 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ) |
26 | 25 | recnd 9947 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ) |
27 | 22, 26 | syldan 486 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ) |
28 | 27 | ralrimiva 2949 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑛 ∈ (ℤ≥‘𝑁)(seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ) |
29 | 28 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∀𝑛 ∈
(ℤ≥‘𝑁)(seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ) |
30 | | simpll 786 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝜑) |
31 | 30, 12 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → seq𝑀( + , 𝐹):𝑍⟶ℝ) |
32 | 30, 4 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑁 ∈ 𝑍) |
33 | | simprl 790 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑚 ∈ (ℤ≥‘𝑁)) |
34 | 1 | uztrn2 11581 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ 𝑍 ∧ 𝑚 ∈ (ℤ≥‘𝑁)) → 𝑚 ∈ 𝑍) |
35 | 32, 33, 34 | syl2anc 691 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑚 ∈ 𝑍) |
36 | 31, 35 | ffvelrnd 6268 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ∈ ℝ) |
37 | | eqid 2610 |
. . . . . . . . . . . . . . . . . 18
⊢
(ℤ≥‘𝑁) = (ℤ≥‘𝑁) |
38 | 37 | uztrn2 11581 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → 𝑛 ∈ (ℤ≥‘𝑁)) |
39 | 38 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑛 ∈ (ℤ≥‘𝑁)) |
40 | 32, 39, 21 | syl2anc 691 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑛 ∈ 𝑍) |
41 | 30, 40, 13 | syl2anc 691 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ) |
42 | 30, 40, 25 | syl2anc 691 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ) |
43 | 30, 24 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → seq𝑀( + , 𝐺):𝑍⟶ℝ) |
44 | 43, 35 | ffvelrnd 6268 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐺)‘𝑚) ∈ ℝ) |
45 | 42, 44 | resubcld 10337 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ∈ ℝ) |
46 | 35, 1 | syl6eleq 2698 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑚 ∈ (ℤ≥‘𝑀)) |
47 | | simprr 792 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑛 ∈ (ℤ≥‘𝑚)) |
48 | | elfzuz 12209 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ≥‘𝑀)) |
49 | 48, 1 | syl6eleqr 2699 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ 𝑍) |
50 | | fveq2 6103 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) |
51 | | fveq2 6103 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = 𝑘 → (𝐺‘𝑚) = (𝐺‘𝑘)) |
52 | 50, 51 | oveq12d 6567 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑘 → ((𝐹‘𝑚) − (𝐺‘𝑚)) = ((𝐹‘𝑘) − (𝐺‘𝑘))) |
53 | | eqid 2610 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚))) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚))) |
54 | | ovex 6577 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑘) − (𝐺‘𝑘)) ∈ V |
55 | 52, 53, 54 | fvmpt 6191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ 𝑍 → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) − (𝐺‘𝑘))) |
56 | 55 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) − (𝐺‘𝑘))) |
57 | 11, 23 | resubcld 10337 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) − (𝐺‘𝑘)) ∈ ℝ) |
58 | 56, 57 | eqeltrd 2688 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘) ∈ ℝ) |
59 | 30, 49, 58 | syl2an 493 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘) ∈ ℝ) |
60 | | elfzuz 12209 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ((𝑚 + 1)...𝑛) → 𝑘 ∈ (ℤ≥‘(𝑚 + 1))) |
61 | | peano2uz 11617 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈
(ℤ≥‘𝑁) → (𝑚 + 1) ∈
(ℤ≥‘𝑁)) |
62 | 33, 61 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (𝑚 + 1) ∈
(ℤ≥‘𝑁)) |
63 | 37 | uztrn2 11581 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑚 + 1) ∈
(ℤ≥‘𝑁) ∧ 𝑘 ∈ (ℤ≥‘(𝑚 + 1))) → 𝑘 ∈
(ℤ≥‘𝑁)) |
64 | 62, 63 | sylan 487 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (ℤ≥‘(𝑚 + 1))) → 𝑘 ∈
(ℤ≥‘𝑁)) |
65 | | cvgcmp.7 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑘) ≤ (𝐹‘𝑘)) |
66 | 1 | uztrn2 11581 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
67 | 4, 66 | sylan 487 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
68 | 11, 23 | subge0d 10496 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (0 ≤ ((𝐹‘𝑘) − (𝐺‘𝑘)) ↔ (𝐺‘𝑘) ≤ (𝐹‘𝑘))) |
69 | 67, 68 | syldan 486 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (0 ≤ ((𝐹‘𝑘) − (𝐺‘𝑘)) ↔ (𝐺‘𝑘) ≤ (𝐹‘𝑘))) |
70 | 65, 69 | mpbird 246 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 0 ≤ ((𝐹‘𝑘) − (𝐺‘𝑘))) |
71 | 67, 55 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) − (𝐺‘𝑘))) |
72 | 70, 71 | breqtrrd 4611 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 0 ≤ ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘)) |
73 | 30, 72 | sylan 487 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 0 ≤ ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘)) |
74 | 64, 73 | syldan 486 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (ℤ≥‘(𝑚 + 1))) → 0 ≤ ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘)) |
75 | 60, 74 | sylan2 490 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 0 ≤ ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘)) |
76 | 46, 47, 59, 75 | sermono 12695 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚))))‘𝑚) ≤ (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚))))‘𝑛)) |
77 | | elfzuz 12209 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (𝑀...𝑚) → 𝑘 ∈ (ℤ≥‘𝑀)) |
78 | 77, 1 | syl6eleqr 2699 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (𝑀...𝑚) → 𝑘 ∈ 𝑍) |
79 | 11 | recnd 9947 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
80 | 30, 78, 79 | syl2an 493 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (𝑀...𝑚)) → (𝐹‘𝑘) ∈ ℂ) |
81 | 23 | recnd 9947 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
82 | 30, 78, 81 | syl2an 493 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (𝑀...𝑚)) → (𝐺‘𝑘) ∈ ℂ) |
83 | 30, 78, 56 | syl2an 493 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (𝑀...𝑚)) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) − (𝐺‘𝑘))) |
84 | 46, 80, 82, 83 | sersub 12706 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚))))‘𝑚) = ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐺)‘𝑚))) |
85 | 40, 1 | syl6eleq 2698 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑛 ∈ (ℤ≥‘𝑀)) |
86 | 30, 49, 79 | syl2an 493 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹‘𝑘) ∈ ℂ) |
87 | 30, 49, 81 | syl2an 493 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺‘𝑘) ∈ ℂ) |
88 | 30, 49, 56 | syl2an 493 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) − (𝐺‘𝑘))) |
89 | 85, 86, 87, 88 | sersub 12706 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) − (𝐺‘𝑚))))‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛))) |
90 | 76, 84, 89 | 3brtr3d 4614 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛))) |
91 | 41, 42 | resubcld 10337 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) ∈ ℝ) |
92 | 36, 44, 91 | lesubaddd 10503 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) ↔ (seq𝑀( + , 𝐹)‘𝑚) ≤ (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) + (seq𝑀( + , 𝐺)‘𝑚)))) |
93 | 90, 92 | mpbid 221 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ≤ (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) + (seq𝑀( + , 𝐺)‘𝑚))) |
94 | 41 | recnd 9947 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ) |
95 | 42 | recnd 9947 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ) |
96 | 44 | recnd 9947 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐺)‘𝑚) ∈ ℂ) |
97 | 94, 95, 96 | subsubd 10299 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → ((seq𝑀( + , 𝐹)‘𝑛) − ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) = (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) + (seq𝑀( + , 𝐺)‘𝑚))) |
98 | 93, 97 | breqtrrd 4611 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)))) |
99 | 36, 41, 45, 98 | lesubd 10510 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) |
100 | 41, 36 | resubcld 10337 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∈ ℝ) |
101 | | rpre 11715 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
102 | 101 | ad2antlr 759 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → 𝑥 ∈ ℝ) |
103 | | lelttr 10007 |
. . . . . . . . . . . . . 14
⊢
((((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ∈ ℝ ∧ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∧ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥)) |
104 | 45, 100, 102, 103 | syl3anc 1318 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → ((((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∧ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥)) |
105 | 99, 104 | mpand 707 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥 → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥)) |
106 | 30, 49, 11 | syl2an 493 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹‘𝑘) ∈ ℝ) |
107 | 60, 64 | sylan2 490 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 𝑘 ∈ (ℤ≥‘𝑁)) |
108 | | 0red 9920 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 0 ∈
ℝ) |
109 | 67, 23 | syldan 486 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐺‘𝑘) ∈ ℝ) |
110 | 67, 11 | syldan 486 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ∈ ℝ) |
111 | | cvgcmp.6 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 0 ≤ (𝐺‘𝑘)) |
112 | 108, 109,
110, 111, 65 | letrd 10073 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 0 ≤ (𝐹‘𝑘)) |
113 | 30, 112 | sylan 487 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 0 ≤ (𝐹‘𝑘)) |
114 | 107, 113 | syldan 486 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 0 ≤ (𝐹‘𝑘)) |
115 | 46, 47, 106, 114 | sermono 12695 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ≤ (seq𝑀( + , 𝐹)‘𝑛)) |
116 | 36, 41, 115 | abssubge0d 14018 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) = ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) |
117 | 116 | breq1d 4593 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) →
((abs‘((seq𝑀( + ,
𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 ↔ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥)) |
118 | 30, 49, 23 | syl2an 493 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺‘𝑘) ∈ ℝ) |
119 | 30, 111 | sylan 487 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 0 ≤ (𝐺‘𝑘)) |
120 | 64, 119 | syldan 486 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ (ℤ≥‘(𝑚 + 1))) → 0 ≤ (𝐺‘𝑘)) |
121 | 60, 120 | sylan2 490 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 0 ≤ (𝐺‘𝑘)) |
122 | 46, 47, 118, 121 | sermono 12695 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (seq𝑀( + , 𝐺)‘𝑚) ≤ (seq𝑀( + , 𝐺)‘𝑛)) |
123 | 44, 42, 122 | abssubge0d 14018 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) = ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) |
124 | 123 | breq1d 4593 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) →
((abs‘((seq𝑀( + ,
𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥 ↔ ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥)) |
125 | 105, 117,
124 | 3imtr4d 282 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑚 ∈
(ℤ≥‘𝑁) ∧ 𝑛 ∈ (ℤ≥‘𝑚))) →
((abs‘((seq𝑀( + ,
𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)) |
126 | 125 | anassrs 678 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(ℤ≥‘𝑁)) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → ((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)) |
127 | 126 | adantld 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(ℤ≥‘𝑁)) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → (((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)) |
128 | 127 | ralimdva 2945 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈
(ℤ≥‘𝑁)) → (∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∀𝑛 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)) |
129 | 128 | reximdva 3000 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑚 ∈
(ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)) |
130 | 37 | r19.29uz 13938 |
. . . . . . 7
⊢
((∀𝑛 ∈
(ℤ≥‘𝑁)(seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ ∃𝑚 ∈
(ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)) |
131 | 29, 129, 130 | syl6an 566 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑚 ∈
(ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
132 | 131 | ralimdva 2945 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑚 ∈
(ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
133 | 1, 37 | cau4 13944 |
. . . . . 6
⊢ (𝑁 ∈ 𝑍 → (∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥))) |
134 | 4, 133 | syl 17 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥))) |
135 | 1, 37 | cau4 13944 |
. . . . . 6
⊢ (𝑁 ∈ 𝑍 → (∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
136 | 4, 135 | syl 17 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑁)∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
137 | 132, 134,
136 | 3imtr4d 282 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
138 | 20, 137 | mpd 15 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)) |
139 | 1 | uztrn2 11581 |
. . . . . . . 8
⊢ ((𝑚 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → 𝑛 ∈ 𝑍) |
140 | | simpr 476 |
. . . . . . . . 9
⊢
(((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) |
141 | 25 | biantrurd 528 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥 ↔ ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
142 | 140, 141 | syl5ib 233 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
143 | 139, 142 | sylan2 490 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑍 ∧ 𝑛 ∈ (ℤ≥‘𝑚))) → (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
144 | 143 | anassrs 678 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑍) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
145 | 144 | ralimdva 2945 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
146 | 145 | reximdva 3000 |
. . . 4
⊢ (𝜑 → (∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
147 | 146 | ralimdv 2946 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))) |
148 | 138, 147 | mpd 15 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑛 ∈ (ℤ≥‘𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)) |
149 | 1, 3, 148 | caurcvg2 14256 |
1
⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) |