Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  climmpt Structured version   Visualization version   GIF version

Theorem climmpt 14150
 Description: Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
2clim.1 𝑍 = (ℤ𝑀)
climmpt.2 𝐺 = (𝑘𝑍 ↦ (𝐹𝑘))
Assertion
Ref Expression
climmpt ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴𝐺𝐴))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑍
Allowed substitution hints:   𝐺(𝑘)   𝑀(𝑘)   𝑉(𝑘)

Proof of Theorem climmpt
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 2clim.1 . 2 𝑍 = (ℤ𝑀)
2 simpr 476 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝐹𝑉)
3 climmpt.2 . . . 4 𝐺 = (𝑘𝑍 ↦ (𝐹𝑘))
4 fvex 6113 . . . . . 6 (ℤ𝑀) ∈ V
51, 4eqeltri 2684 . . . . 5 𝑍 ∈ V
65mptex 6390 . . . 4 (𝑘𝑍 ↦ (𝐹𝑘)) ∈ V
73, 6eqeltri 2684 . . 3 𝐺 ∈ V
87a1i 11 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝐺 ∈ V)
9 simpl 472 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → 𝑀 ∈ ℤ)
10 fveq2 6103 . . . . 5 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
11 fvex 6113 . . . . 5 (𝐹𝑚) ∈ V
1210, 3, 11fvmpt 6191 . . . 4 (𝑚𝑍 → (𝐺𝑚) = (𝐹𝑚))
1312eqcomd 2616 . . 3 (𝑚𝑍 → (𝐹𝑚) = (𝐺𝑚))
1413adantl 481 . 2 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝑚𝑍) → (𝐹𝑚) = (𝐺𝑚))
151, 2, 8, 9, 14climeq 14146 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴𝐺𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  ℤcz 11254  ℤ≥cuz 11563   ⇝ cli 14063 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-neg 10148  df-z 11255  df-uz 11564  df-clim 14067 This theorem is referenced by:  climmpt2  14152  climrecl  14162  climge0  14163  caurcvg2  14256  caucvg  14257  climfsum  14393  dstfrvclim1  29866  divcnvg  38694
 Copyright terms: Public domain W3C validator