Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstfrvclim1 Structured version   Visualization version   GIF version

Theorem dstfrvclim1 29866
Description: The limit of the cumulative distribution function is one. (Contributed by Thierry Arnoux, 12-Feb-2017.) (Revised by Thierry Arnoux, 11-Jul-2017.)
Hypotheses
Ref Expression
dstfrv.1 (𝜑𝑃 ∈ Prob)
dstfrv.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
dstfrv.3 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝑃‘(𝑋RV/𝑐𝑥))))
Assertion
Ref Expression
dstfrvclim1 (𝜑𝐹 ⇝ 1)
Distinct variable groups:   𝑥,𝑃   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem dstfrvclim1
Dummy variables 𝑖 𝑎 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . 5 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
2 dstfrv.1 . . . . . 6 (𝜑𝑃 ∈ Prob)
3 domprobmeas 29799 . . . . . 6 (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃))
42, 3syl 17 . . . . 5 (𝜑𝑃 ∈ (measures‘dom 𝑃))
52adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → 𝑃 ∈ Prob)
6 dstfrv.2 . . . . . . . 8 (𝜑𝑋 ∈ (rRndVar‘𝑃))
76adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → 𝑋 ∈ (rRndVar‘𝑃))
8 simpr 476 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
98nnred 10912 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℝ)
105, 7, 9orvclteel 29861 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → (𝑋RV/𝑐𝑖) ∈ dom 𝑃)
11 eqid 2610 . . . . . 6 (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)) = (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))
1210, 11fmptd 6292 . . . . 5 (𝜑 → (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)):ℕ⟶dom 𝑃)
132adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑃 ∈ Prob)
146adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ (rRndVar‘𝑃))
15 simpr 476 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
1615nnred 10912 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
1715peano2nnd 10914 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
1817nnred 10912 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℝ)
1916lep1d 10834 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≤ (𝑛 + 1))
2013, 14, 16, 18, 19orvclteinc 29864 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑋RV/𝑐𝑛) ⊆ (𝑋RV/𝑐 ≤ (𝑛 + 1)))
21 eqidd 2611 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)) = (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)))
22 simpr 476 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 = 𝑛) → 𝑖 = 𝑛)
2322oveq2d 6565 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 = 𝑛) → (𝑋RV/𝑐𝑖) = (𝑋RV/𝑐𝑛))
2413, 14, 16orvclteel 29861 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑋RV/𝑐𝑛) ∈ dom 𝑃)
2521, 23, 15, 24fvmptd 6197 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))‘𝑛) = (𝑋RV/𝑐𝑛))
26 simpr 476 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 = (𝑛 + 1)) → 𝑖 = (𝑛 + 1))
2726oveq2d 6565 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 = (𝑛 + 1)) → (𝑋RV/𝑐𝑖) = (𝑋RV/𝑐 ≤ (𝑛 + 1)))
2813, 14, 18orvclteel 29861 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑋RV/𝑐 ≤ (𝑛 + 1)) ∈ dom 𝑃)
2921, 27, 17, 28fvmptd 6197 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))‘(𝑛 + 1)) = (𝑋RV/𝑐 ≤ (𝑛 + 1)))
3020, 25, 293sstr4d 3611 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))‘𝑛) ⊆ ((𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))‘(𝑛 + 1)))
311, 4, 12, 30meascnbl 29609 . . . 4 (𝜑 → (𝑃 ∘ (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)))(⇝𝑡‘(TopOpen‘(ℝ*𝑠s (0[,]+∞))))(𝑃 ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))))
32 measfn 29594 . . . . . . . 8 (𝑃 ∈ (measures‘dom 𝑃) → 𝑃 Fn dom 𝑃)
33 dffn5 6151 . . . . . . . . 9 (𝑃 Fn dom 𝑃𝑃 = (𝑎 ∈ dom 𝑃 ↦ (𝑃𝑎)))
3433biimpi 205 . . . . . . . 8 (𝑃 Fn dom 𝑃𝑃 = (𝑎 ∈ dom 𝑃 ↦ (𝑃𝑎)))
354, 32, 343syl 18 . . . . . . 7 (𝜑𝑃 = (𝑎 ∈ dom 𝑃 ↦ (𝑃𝑎)))
36 prob01 29802 . . . . . . . 8 ((𝑃 ∈ Prob ∧ 𝑎 ∈ dom 𝑃) → (𝑃𝑎) ∈ (0[,]1))
372, 36sylan 487 . . . . . . 7 ((𝜑𝑎 ∈ dom 𝑃) → (𝑃𝑎) ∈ (0[,]1))
3835, 37fmpt3d 6293 . . . . . 6 (𝜑𝑃:dom 𝑃⟶(0[,]1))
39 fco 5971 . . . . . 6 ((𝑃:dom 𝑃⟶(0[,]1) ∧ (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)):ℕ⟶dom 𝑃) → (𝑃 ∘ (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))):ℕ⟶(0[,]1))
4038, 12, 39syl2anc 691 . . . . 5 (𝜑 → (𝑃 ∘ (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))):ℕ⟶(0[,]1))
412, 6dstfrvunirn 29863 . . . . . . 7 (𝜑 ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)) = dom 𝑃)
422unveldomd 29804 . . . . . . 7 (𝜑 dom 𝑃 ∈ dom 𝑃)
4341, 42eqeltrd 2688 . . . . . 6 (𝜑 ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)) ∈ dom 𝑃)
44 prob01 29802 . . . . . 6 ((𝑃 ∈ Prob ∧ ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)) ∈ dom 𝑃) → (𝑃 ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))) ∈ (0[,]1))
452, 43, 44syl2anc 691 . . . . 5 (𝜑 → (𝑃 ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))) ∈ (0[,]1))
46 0xr 9965 . . . . . 6 0 ∈ ℝ*
47 pnfxr 9971 . . . . . 6 +∞ ∈ ℝ*
48 0le0 10987 . . . . . 6 0 ≤ 0
49 1re 9918 . . . . . . 7 1 ∈ ℝ
50 ltpnf 11830 . . . . . . 7 (1 ∈ ℝ → 1 < +∞)
5149, 50ax-mp 5 . . . . . 6 1 < +∞
52 iccssico 12116 . . . . . 6 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 1 < +∞)) → (0[,]1) ⊆ (0[,)+∞))
5346, 47, 48, 51, 52mp4an 705 . . . . 5 (0[,]1) ⊆ (0[,)+∞)
541, 40, 45, 53lmlimxrge0 29322 . . . 4 (𝜑 → ((𝑃 ∘ (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)))(⇝𝑡‘(TopOpen‘(ℝ*𝑠s (0[,]+∞))))(𝑃 ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))) ↔ (𝑃 ∘ (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))) ⇝ (𝑃 ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)))))
5531, 54mpbid 221 . . 3 (𝜑 → (𝑃 ∘ (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))) ⇝ (𝑃 ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))))
56 eqidd 2611 . . . . 5 (𝜑 → (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)) = (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖)))
57 fveq2 6103 . . . . 5 (𝑎 = (𝑋RV/𝑐𝑖) → (𝑃𝑎) = (𝑃‘(𝑋RV/𝑐𝑖)))
5810, 56, 35, 57fmptco 6303 . . . 4 (𝜑 → (𝑃 ∘ (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))) = (𝑖 ∈ ℕ ↦ (𝑃‘(𝑋RV/𝑐𝑖))))
59 dstfrv.3 . . . . . . 7 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝑃‘(𝑋RV/𝑐𝑥))))
6059adantr 480 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → 𝐹 = (𝑥 ∈ ℝ ↦ (𝑃‘(𝑋RV/𝑐𝑥))))
61 simpr 476 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ) ∧ 𝑥 = 𝑖) → 𝑥 = 𝑖)
6261oveq2d 6565 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ 𝑥 = 𝑖) → (𝑋RV/𝑐𝑥) = (𝑋RV/𝑐𝑖))
6362fveq2d 6107 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ 𝑥 = 𝑖) → (𝑃‘(𝑋RV/𝑐𝑥)) = (𝑃‘(𝑋RV/𝑐𝑖)))
645, 10probvalrnd 29813 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → (𝑃‘(𝑋RV/𝑐𝑖)) ∈ ℝ)
6560, 63, 9, 64fvmptd 6197 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) = (𝑃‘(𝑋RV/𝑐𝑖)))
6665mpteq2dva 4672 . . . 4 (𝜑 → (𝑖 ∈ ℕ ↦ (𝐹𝑖)) = (𝑖 ∈ ℕ ↦ (𝑃‘(𝑋RV/𝑐𝑖))))
6758, 66eqtr4d 2647 . . 3 (𝜑 → (𝑃 ∘ (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))) = (𝑖 ∈ ℕ ↦ (𝐹𝑖)))
6841fveq2d 6107 . . . 4 (𝜑 → (𝑃 ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))) = (𝑃 dom 𝑃))
69 probtot 29801 . . . . 5 (𝑃 ∈ Prob → (𝑃 dom 𝑃) = 1)
702, 69syl 17 . . . 4 (𝜑 → (𝑃 dom 𝑃) = 1)
7168, 70eqtrd 2644 . . 3 (𝜑 → (𝑃 ran (𝑖 ∈ ℕ ↦ (𝑋RV/𝑐𝑖))) = 1)
7255, 67, 713brtr3d 4614 . 2 (𝜑 → (𝑖 ∈ ℕ ↦ (𝐹𝑖)) ⇝ 1)
73 1z 11284 . . 3 1 ∈ ℤ
74 reex 9906 . . . . 5 ℝ ∈ V
7574mptex 6390 . . . 4 (𝑥 ∈ ℝ ↦ (𝑃‘(𝑋RV/𝑐𝑥))) ∈ V
7659, 75syl6eqel 2696 . . 3 (𝜑𝐹 ∈ V)
77 nnuz 11599 . . . 4 ℕ = (ℤ‘1)
78 eqid 2610 . . . 4 (𝑖 ∈ ℕ ↦ (𝐹𝑖)) = (𝑖 ∈ ℕ ↦ (𝐹𝑖))
7977, 78climmpt 14150 . . 3 ((1 ∈ ℤ ∧ 𝐹 ∈ V) → (𝐹 ⇝ 1 ↔ (𝑖 ∈ ℕ ↦ (𝐹𝑖)) ⇝ 1))
8073, 76, 79sylancr 694 . 2 (𝜑 → (𝐹 ⇝ 1 ↔ (𝑖 ∈ ℕ ↦ (𝐹𝑖)) ⇝ 1))
8172, 80mpbird 246 1 (𝜑𝐹 ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540   cuni 4372   class class class wbr 4583  cmpt 4643  dom cdm 5038  ran crn 5039  ccom 5042   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cn 10897  cz 11254  [,)cico 12048  [,]cicc 12049  cli 14063  s cress 15696  TopOpenctopn 15905  *𝑠cxrs 15983  𝑡clm 20840  measurescmeas 29585  Probcprb 29796  rRndVarcrrv 29829  RV/𝑐corvc 29844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-ac2 9168  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-ac 8822  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-ordt 15984  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-ps 17023  df-tsr 17024  df-plusf 17064  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-subrg 18601  df-abv 18640  df-lmod 18688  df-scaf 18689  df-sra 18993  df-rgmod 18994  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-lm 20843  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-tmd 21686  df-tgp 21687  df-tsms 21740  df-trg 21773  df-xms 21935  df-ms 21936  df-tms 21937  df-nm 22197  df-ngp 22198  df-nrg 22200  df-nlm 22201  df-ii 22488  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-esum 29417  df-siga 29498  df-sigagen 29529  df-brsiga 29572  df-meas 29586  df-mbfm 29640  df-prob 29797  df-rrv 29830  df-orvc 29845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator