MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climmpt2 Structured version   Visualization version   GIF version

Theorem climmpt2 14152
Description: Relate an integer limit on a not-quite-function to a real limit. (Contributed by Mario Carneiro, 17-Sep-2014.)
Hypotheses
Ref Expression
climmpt2.1 𝑍 = (ℤ𝑀)
climmpt2.2 (𝜑𝑀 ∈ ℤ)
climmpt2.3 (𝜑𝐹𝑉)
climmpt2.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
climmpt2 (𝜑 → (𝐹𝐴 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 𝐴))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑍   𝜑,𝑘   𝑛,𝐹   𝐴,𝑛   𝑛,𝑍   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑘)   𝑀(𝑘,𝑛)   𝑉(𝑘,𝑛)

Proof of Theorem climmpt2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 climmpt2.2 . . 3 (𝜑𝑀 ∈ ℤ)
2 climmpt2.3 . . 3 (𝜑𝐹𝑉)
3 climmpt2.1 . . . 4 𝑍 = (ℤ𝑀)
4 eqid 2610 . . . 4 (𝑛𝑍 ↦ (𝐹𝑛)) = (𝑛𝑍 ↦ (𝐹𝑛))
53, 4climmpt 14150 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝ 𝐴))
61, 2, 5syl2anc 691 . 2 (𝜑 → (𝐹𝐴 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝ 𝐴))
7 climmpt2.5 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
87ralrimiva 2949 . . . . . 6 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
9 fveq2 6103 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
109eleq1d 2672 . . . . . . . 8 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
1110cbvralv 3147 . . . . . . 7 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ↔ ∀𝑚𝑍 (𝐹𝑚) ∈ ℂ)
12 fveq2 6103 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
1312eleq1d 2672 . . . . . . . 8 (𝑚 = 𝑛 → ((𝐹𝑚) ∈ ℂ ↔ (𝐹𝑛) ∈ ℂ))
1413cbvralv 3147 . . . . . . 7 (∀𝑚𝑍 (𝐹𝑚) ∈ ℂ ↔ ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
1511, 14bitri 263 . . . . . 6 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ↔ ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
168, 15sylib 207 . . . . 5 (𝜑 → ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
1716r19.21bi 2916 . . . 4 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℂ)
1817, 4fmptd 6292 . . 3 (𝜑 → (𝑛𝑍 ↦ (𝐹𝑛)):𝑍⟶ℂ)
193, 1, 18rlimclim 14125 . 2 (𝜑 → ((𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 𝐴 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝ 𝐴))
206, 19bitr4d 270 1 (𝜑 → (𝐹𝐴 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896   class class class wbr 4583  cmpt 4643  cfv 5804  cc 9813  cz 11254  cuz 11563  cli 14063  𝑟 crli 14064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fl 12455  df-clim 14067  df-rlim 14068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator