Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carageniuncl Structured version   Visualization version   GIF version

Theorem carageniuncl 39413
Description: The Caratheodory's construction is closed under indexed countable union. Step (d) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
carageniuncl.o (𝜑𝑂 ∈ OutMeas)
carageniuncl.s 𝑆 = (CaraGen‘𝑂)
carageniuncl.3 (𝜑𝑀 ∈ ℤ)
carageniuncl.z 𝑍 = (ℤ𝑀)
carageniuncl.e (𝜑𝐸:𝑍𝑆)
Assertion
Ref Expression
carageniuncl (𝜑 𝑛𝑍 (𝐸𝑛) ∈ 𝑆)
Distinct variable groups:   𝑛,𝐸   𝑛,𝑀   𝑛,𝑂   𝑛,𝑍   𝜑,𝑛
Allowed substitution hint:   𝑆(𝑛)

Proof of Theorem carageniuncl
Dummy variables 𝑎 𝑖 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 carageniuncl.o . 2 (𝜑𝑂 ∈ OutMeas)
2 eqid 2610 . 2 dom 𝑂 = dom 𝑂
3 carageniuncl.s . 2 𝑆 = (CaraGen‘𝑂)
4 carageniuncl.e . . . . . . . 8 (𝜑𝐸:𝑍𝑆)
54ffvelrnda 6267 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ 𝑆)
6 elssuni 4403 . . . . . . 7 ((𝐸𝑛) ∈ 𝑆 → (𝐸𝑛) ⊆ 𝑆)
75, 6syl 17 . . . . . 6 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ 𝑆)
81, 3caragenuni 39401 . . . . . . 7 (𝜑 𝑆 = dom 𝑂)
98adantr 480 . . . . . 6 ((𝜑𝑛𝑍) → 𝑆 = dom 𝑂)
107, 9sseqtrd 3604 . . . . 5 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ dom 𝑂)
1110ralrimiva 2949 . . . 4 (𝜑 → ∀𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂)
12 iunss 4497 . . . 4 ( 𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂 ↔ ∀𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂)
1311, 12sylibr 223 . . 3 (𝜑 𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂)
14 carageniuncl.z . . . . . . 7 𝑍 = (ℤ𝑀)
15 fvex 6113 . . . . . . 7 (ℤ𝑀) ∈ V
1614, 15eqeltri 2684 . . . . . 6 𝑍 ∈ V
17 fvex 6113 . . . . . 6 (𝐸𝑛) ∈ V
1816, 17iunex 7039 . . . . 5 𝑛𝑍 (𝐸𝑛) ∈ V
1918a1i 11 . . . 4 (𝜑 𝑛𝑍 (𝐸𝑛) ∈ V)
20 elpwg 4116 . . . 4 ( 𝑛𝑍 (𝐸𝑛) ∈ V → ( 𝑛𝑍 (𝐸𝑛) ∈ 𝒫 dom 𝑂 𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂))
2119, 20syl 17 . . 3 (𝜑 → ( 𝑛𝑍 (𝐸𝑛) ∈ 𝒫 dom 𝑂 𝑛𝑍 (𝐸𝑛) ⊆ dom 𝑂))
2213, 21mpbird 246 . 2 (𝜑 𝑛𝑍 (𝐸𝑛) ∈ 𝒫 dom 𝑂)
23 iccssxr 12127 . . . . 5 (0[,]+∞) ⊆ ℝ*
241adantr 480 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑂 ∈ OutMeas)
25 elpwi 4117 . . . . . . . 8 (𝑎 ∈ 𝒫 dom 𝑂𝑎 dom 𝑂)
26 ssinss1 3803 . . . . . . . 8 (𝑎 dom 𝑂 → (𝑎 𝑛𝑍 (𝐸𝑛)) ⊆ dom 𝑂)
2725, 26syl 17 . . . . . . 7 (𝑎 ∈ 𝒫 dom 𝑂 → (𝑎 𝑛𝑍 (𝐸𝑛)) ⊆ dom 𝑂)
2827adantl 481 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 𝑛𝑍 (𝐸𝑛)) ⊆ dom 𝑂)
2924, 2, 28omecl 39393 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) ∈ (0[,]+∞))
3023, 29sseldi 3566 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) ∈ ℝ*)
3125adantl 481 . . . . . . 7 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 dom 𝑂)
3231ssdifssd 3710 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑎 𝑛𝑍 (𝐸𝑛)) ⊆ dom 𝑂)
3324, 2, 32omecl 39393 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) ∈ (0[,]+∞))
3423, 33sseldi 3566 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) ∈ ℝ*)
3530, 34xaddcld 12003 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ∈ ℝ*)
3624, 2, 31omecl 39393 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂𝑎) ∈ (0[,]+∞))
3723, 36sseldi 3566 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂𝑎) ∈ ℝ*)
38 pnfge 11840 . . . . . . 7 (((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ∈ ℝ* → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ +∞)
3935, 38syl 17 . . . . . 6 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ +∞)
4039adantr 480 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) = +∞) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ +∞)
41 id 22 . . . . . . 7 ((𝑂𝑎) = +∞ → (𝑂𝑎) = +∞)
4241eqcomd 2616 . . . . . 6 ((𝑂𝑎) = +∞ → +∞ = (𝑂𝑎))
4342adantl 481 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) = +∞) → +∞ = (𝑂𝑎))
4440, 43breqtrd 4609 . . . 4 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) = +∞) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎))
45 simpl 472 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝜑𝑎 ∈ 𝒫 dom 𝑂))
46 rge0ssre 12151 . . . . . 6 (0[,)+∞) ⊆ ℝ
47 0xr 9965 . . . . . . . 8 0 ∈ ℝ*
4847a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → 0 ∈ ℝ*)
49 pnfxr 9971 . . . . . . . 8 +∞ ∈ ℝ*
5049a1i 11 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → +∞ ∈ ℝ*)
5145, 36syl 17 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝑂𝑎) ∈ (0[,]+∞))
5241necon3bi 2808 . . . . . . . 8 (¬ (𝑂𝑎) = +∞ → (𝑂𝑎) ≠ +∞)
5352adantl 481 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝑂𝑎) ≠ +∞)
5448, 50, 51, 53eliccelicod 38604 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝑂𝑎) ∈ (0[,)+∞))
5546, 54sseldi 3566 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → (𝑂𝑎) ∈ ℝ)
5624ad2antrr 758 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑂 ∈ OutMeas)
5731ad2antrr 758 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑎 dom 𝑂)
58 simpr 476 . . . . . . . . 9 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → (𝑂𝑎) ∈ ℝ)
5958adantr 480 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (𝑂𝑎) ∈ ℝ)
60 carageniuncl.3 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
6160ad3antrrr 762 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈ ℤ)
624ad3antrrr 762 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐸:𝑍𝑆)
63 simpr 476 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
64 eqid 2610 . . . . . . . 8 (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖)) = (𝑛𝑍 𝑖 ∈ (𝑀...𝑛)(𝐸𝑖))
65 fveq2 6103 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝐸𝑚) = (𝐸𝑛))
66 oveq2 6557 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑀..^𝑚) = (𝑀..^𝑛))
6766iuneq1d 4481 . . . . . . . . . 10 (𝑚 = 𝑛 𝑖 ∈ (𝑀..^𝑚)(𝐸𝑖) = 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖))
6865, 67difeq12d 3691 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝐸𝑚) ∖ 𝑖 ∈ (𝑀..^𝑚)(𝐸𝑖)) = ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))
6968cbvmptv 4678 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐸𝑚) ∖ 𝑖 ∈ (𝑀..^𝑚)(𝐸𝑖))) = (𝑛𝑍 ↦ ((𝐸𝑛) ∖ 𝑖 ∈ (𝑀..^𝑛)(𝐸𝑖)))
7056, 3, 2, 57, 59, 61, 14, 62, 63, 64, 69carageniuncllem2 39412 . . . . . . 7 ((((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝑎) + 𝑥))
7170ralrimiva 2949 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → ∀𝑥 ∈ ℝ+ ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝑎) + 𝑥))
7235adantr 480 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ∈ ℝ*)
73 xralrple 11910 . . . . . . 7 ((((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ∈ ℝ* ∧ (𝑂𝑎) ∈ ℝ) → (((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎) ↔ ∀𝑥 ∈ ℝ+ ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝑎) + 𝑥)))
7472, 58, 73syl2anc 691 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → (((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎) ↔ ∀𝑥 ∈ ℝ+ ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ ((𝑂𝑎) + 𝑥)))
7571, 74mpbird 246 . . . . 5 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ (𝑂𝑎) ∈ ℝ) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎))
7645, 55, 75syl2anc 691 . . . 4 (((𝜑𝑎 ∈ 𝒫 dom 𝑂) ∧ ¬ (𝑂𝑎) = +∞) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎))
7744, 76pm2.61dan 828 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) ≤ (𝑂𝑎))
7824, 2, 31omelesplit 39408 . . 3 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → (𝑂𝑎) ≤ ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))))
7935, 37, 77, 78xrletrid 11862 . 2 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛))) +𝑒 (𝑂‘(𝑎 𝑛𝑍 (𝐸𝑛)))) = (𝑂𝑎))
801, 2, 3, 22, 79carageneld 39392 1 (𝜑 𝑛𝑍 (𝐸𝑛) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cdif 3537  cin 3539  wss 3540  𝒫 cpw 4108   cuni 4372   ciun 4455   class class class wbr 4583  cmpt 4643  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815   + caddc 9818  +∞cpnf 9950  *cxr 9952  cle 9954  cz 11254  cuz 11563  +crp 11708   +𝑒 cxad 11820  [,)cico 12048  [,]cicc 12049  ...cfz 12197  ..^cfzo 12334  OutMeascome 39379  CaraGenccaragen 39381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-ac2 9168  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-ac 8822  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-sumge0 39256  df-ome 39380  df-caragen 39382
This theorem is referenced by:  caragenunicl  39414
  Copyright terms: Public domain W3C validator