MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij2lem3 Structured version   Visualization version   GIF version

Theorem ackbij2lem3 8946
Description: Lemma for ackbij2 8948. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypotheses
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
ackbij.g 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥𝑦))))
Assertion
Ref Expression
ackbij2lem3 (𝐴 ∈ ω → (rec(𝐺, ∅)‘𝐴) ⊆ (rec(𝐺, ∅)‘suc 𝐴))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐴,𝑦

Proof of Theorem ackbij2lem3
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . 4 (𝑎 = ∅ → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘∅))
2 suceq 5707 . . . . . 6 (𝑎 = ∅ → suc 𝑎 = suc ∅)
32fveq2d 6107 . . . . 5 (𝑎 = ∅ → (rec(𝐺, ∅)‘suc 𝑎) = (rec(𝐺, ∅)‘suc ∅))
4 fveq2 6103 . . . . 5 (𝑎 = ∅ → (𝑅1𝑎) = (𝑅1‘∅))
53, 4reseq12d 5318 . . . 4 (𝑎 = ∅ → ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1𝑎)) = ((rec(𝐺, ∅)‘suc ∅) ↾ (𝑅1‘∅)))
61, 5eqeq12d 2625 . . 3 (𝑎 = ∅ → ((rec(𝐺, ∅)‘𝑎) = ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1𝑎)) ↔ (rec(𝐺, ∅)‘∅) = ((rec(𝐺, ∅)‘suc ∅) ↾ (𝑅1‘∅))))
7 fveq2 6103 . . . 4 (𝑎 = 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝑏))
8 suceq 5707 . . . . . 6 (𝑎 = 𝑏 → suc 𝑎 = suc 𝑏)
98fveq2d 6107 . . . . 5 (𝑎 = 𝑏 → (rec(𝐺, ∅)‘suc 𝑎) = (rec(𝐺, ∅)‘suc 𝑏))
10 fveq2 6103 . . . . 5 (𝑎 = 𝑏 → (𝑅1𝑎) = (𝑅1𝑏))
119, 10reseq12d 5318 . . . 4 (𝑎 = 𝑏 → ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1𝑎)) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)))
127, 11eqeq12d 2625 . . 3 (𝑎 = 𝑏 → ((rec(𝐺, ∅)‘𝑎) = ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1𝑎)) ↔ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))))
13 fveq2 6103 . . . 4 (𝑎 = suc 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘suc 𝑏))
14 suceq 5707 . . . . . 6 (𝑎 = suc 𝑏 → suc 𝑎 = suc suc 𝑏)
1514fveq2d 6107 . . . . 5 (𝑎 = suc 𝑏 → (rec(𝐺, ∅)‘suc 𝑎) = (rec(𝐺, ∅)‘suc suc 𝑏))
16 fveq2 6103 . . . . 5 (𝑎 = suc 𝑏 → (𝑅1𝑎) = (𝑅1‘suc 𝑏))
1715, 16reseq12d 5318 . . . 4 (𝑎 = suc 𝑏 → ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1𝑎)) = ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc 𝑏)))
1813, 17eqeq12d 2625 . . 3 (𝑎 = suc 𝑏 → ((rec(𝐺, ∅)‘𝑎) = ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1𝑎)) ↔ (rec(𝐺, ∅)‘suc 𝑏) = ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc 𝑏))))
19 fveq2 6103 . . . 4 (𝑎 = 𝐴 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝐴))
20 suceq 5707 . . . . . 6 (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴)
2120fveq2d 6107 . . . . 5 (𝑎 = 𝐴 → (rec(𝐺, ∅)‘suc 𝑎) = (rec(𝐺, ∅)‘suc 𝐴))
22 fveq2 6103 . . . . 5 (𝑎 = 𝐴 → (𝑅1𝑎) = (𝑅1𝐴))
2321, 22reseq12d 5318 . . . 4 (𝑎 = 𝐴 → ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1𝑎)) = ((rec(𝐺, ∅)‘suc 𝐴) ↾ (𝑅1𝐴)))
2419, 23eqeq12d 2625 . . 3 (𝑎 = 𝐴 → ((rec(𝐺, ∅)‘𝑎) = ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1𝑎)) ↔ (rec(𝐺, ∅)‘𝐴) = ((rec(𝐺, ∅)‘suc 𝐴) ↾ (𝑅1𝐴))))
25 res0 5321 . . . 4 ((rec(𝐺, ∅)‘suc ∅) ↾ ∅) = ∅
26 r10 8514 . . . . 5 (𝑅1‘∅) = ∅
2726reseq2i 5314 . . . 4 ((rec(𝐺, ∅)‘suc ∅) ↾ (𝑅1‘∅)) = ((rec(𝐺, ∅)‘suc ∅) ↾ ∅)
28 0ex 4718 . . . . 5 ∅ ∈ V
2928rdg0 7404 . . . 4 (rec(𝐺, ∅)‘∅) = ∅
3025, 27, 293eqtr4ri 2643 . . 3 (rec(𝐺, ∅)‘∅) = ((rec(𝐺, ∅)‘suc ∅) ↾ (𝑅1‘∅))
31 peano2 6978 . . . . . . . 8 (𝑏 ∈ ω → suc 𝑏 ∈ ω)
32 ackbij.f . . . . . . . . 9 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
33 ackbij.g . . . . . . . . 9 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥𝑦))))
3432, 33ackbij2lem2 8945 . . . . . . . 8 (suc 𝑏 ∈ ω → (rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc 𝑏)))
3531, 34syl 17 . . . . . . 7 (𝑏 ∈ ω → (rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc 𝑏)))
36 f1ofn 6051 . . . . . . 7 ((rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc 𝑏)) → (rec(𝐺, ∅)‘suc 𝑏) Fn (𝑅1‘suc 𝑏))
3735, 36syl 17 . . . . . 6 (𝑏 ∈ ω → (rec(𝐺, ∅)‘suc 𝑏) Fn (𝑅1‘suc 𝑏))
3837adantr 480 . . . . 5 ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) → (rec(𝐺, ∅)‘suc 𝑏) Fn (𝑅1‘suc 𝑏))
39 peano2 6978 . . . . . . . 8 (suc 𝑏 ∈ ω → suc suc 𝑏 ∈ ω)
4032, 33ackbij2lem2 8945 . . . . . . . 8 (suc suc 𝑏 ∈ ω → (rec(𝐺, ∅)‘suc suc 𝑏):(𝑅1‘suc suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc suc 𝑏)))
41 f1ofn 6051 . . . . . . . 8 ((rec(𝐺, ∅)‘suc suc 𝑏):(𝑅1‘suc suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc suc 𝑏)) → (rec(𝐺, ∅)‘suc suc 𝑏) Fn (𝑅1‘suc suc 𝑏))
4231, 39, 40, 414syl 19 . . . . . . 7 (𝑏 ∈ ω → (rec(𝐺, ∅)‘suc suc 𝑏) Fn (𝑅1‘suc suc 𝑏))
43 nnon 6963 . . . . . . . . 9 (suc 𝑏 ∈ ω → suc 𝑏 ∈ On)
4431, 43syl 17 . . . . . . . 8 (𝑏 ∈ ω → suc 𝑏 ∈ On)
45 r1sssuc 8529 . . . . . . . 8 (suc 𝑏 ∈ On → (𝑅1‘suc 𝑏) ⊆ (𝑅1‘suc suc 𝑏))
4644, 45syl 17 . . . . . . 7 (𝑏 ∈ ω → (𝑅1‘suc 𝑏) ⊆ (𝑅1‘suc suc 𝑏))
47 fnssres 5918 . . . . . . 7 (((rec(𝐺, ∅)‘suc suc 𝑏) Fn (𝑅1‘suc suc 𝑏) ∧ (𝑅1‘suc 𝑏) ⊆ (𝑅1‘suc suc 𝑏)) → ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc 𝑏)) Fn (𝑅1‘suc 𝑏))
4842, 46, 47syl2anc 691 . . . . . 6 (𝑏 ∈ ω → ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc 𝑏)) Fn (𝑅1‘suc 𝑏))
4948adantr 480 . . . . 5 ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) → ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc 𝑏)) Fn (𝑅1‘suc 𝑏))
50 nnon 6963 . . . . . . . . . . . . . . 15 (𝑏 ∈ ω → 𝑏 ∈ On)
51 r1suc 8516 . . . . . . . . . . . . . . 15 (𝑏 ∈ On → (𝑅1‘suc 𝑏) = 𝒫 (𝑅1𝑏))
5250, 51syl 17 . . . . . . . . . . . . . 14 (𝑏 ∈ ω → (𝑅1‘suc 𝑏) = 𝒫 (𝑅1𝑏))
5352eleq2d 2673 . . . . . . . . . . . . 13 (𝑏 ∈ ω → (𝑐 ∈ (𝑅1‘suc 𝑏) ↔ 𝑐 ∈ 𝒫 (𝑅1𝑏)))
5453biimpa 500 . . . . . . . . . . . 12 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → 𝑐 ∈ 𝒫 (𝑅1𝑏))
5554elpwid 4118 . . . . . . . . . . 11 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → 𝑐 ⊆ (𝑅1𝑏))
56 resima2 5352 . . . . . . . . . . 11 (𝑐 ⊆ (𝑅1𝑏) → (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑐) = ((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐))
5755, 56syl 17 . . . . . . . . . 10 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑐) = ((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐))
5857fveq2d 6107 . . . . . . . . 9 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑐)) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐)))
59 fvex 6113 . . . . . . . . . . . . 13 (rec(𝐺, ∅)‘suc 𝑏) ∈ V
6059resex 5363 . . . . . . . . . . . 12 ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ∈ V
61 dmeq 5246 . . . . . . . . . . . . . . 15 (𝑥 = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) → dom 𝑥 = dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)))
6261pweqd 4113 . . . . . . . . . . . . . 14 (𝑥 = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) → 𝒫 dom 𝑥 = 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)))
63 imaeq1 5380 . . . . . . . . . . . . . . 15 (𝑥 = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) → (𝑥𝑦) = (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦))
6463fveq2d 6107 . . . . . . . . . . . . . 14 (𝑥 = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) → (𝐹‘(𝑥𝑦)) = (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦)))
6562, 64mpteq12dv 4663 . . . . . . . . . . . . 13 (𝑥 = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) → (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥𝑦))) = (𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦))))
6660dmex 6991 . . . . . . . . . . . . . . 15 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ∈ V
6766pwex 4774 . . . . . . . . . . . . . 14 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ∈ V
6867mptex 6390 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦))) ∈ V
6965, 33, 68fvmpt 6191 . . . . . . . . . . . 12 (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ∈ V → (𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) = (𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦))))
7060, 69ax-mp 5 . . . . . . . . . . 11 (𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) = (𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦)))
7170fveq1i 6104 . . . . . . . . . 10 ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)))‘𝑐) = ((𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦)))‘𝑐)
72 r1sssuc 8529 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ On → (𝑅1𝑏) ⊆ (𝑅1‘suc 𝑏))
7350, 72syl 17 . . . . . . . . . . . . . . . 16 (𝑏 ∈ ω → (𝑅1𝑏) ⊆ (𝑅1‘suc 𝑏))
74 fnssres 5918 . . . . . . . . . . . . . . . 16 (((rec(𝐺, ∅)‘suc 𝑏) Fn (𝑅1‘suc 𝑏) ∧ (𝑅1𝑏) ⊆ (𝑅1‘suc 𝑏)) → ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) Fn (𝑅1𝑏))
7537, 73, 74syl2anc 691 . . . . . . . . . . . . . . 15 (𝑏 ∈ ω → ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) Fn (𝑅1𝑏))
76 fndm 5904 . . . . . . . . . . . . . . 15 (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) Fn (𝑅1𝑏) → dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) = (𝑅1𝑏))
7775, 76syl 17 . . . . . . . . . . . . . 14 (𝑏 ∈ ω → dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) = (𝑅1𝑏))
7877pweqd 4113 . . . . . . . . . . . . 13 (𝑏 ∈ ω → 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) = 𝒫 (𝑅1𝑏))
7978adantr 480 . . . . . . . . . . . 12 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) = 𝒫 (𝑅1𝑏))
8054, 79eleqtrrd 2691 . . . . . . . . . . 11 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → 𝑐 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)))
81 imaeq2 5381 . . . . . . . . . . . . 13 (𝑦 = 𝑐 → (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦) = (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑐))
8281fveq2d 6107 . . . . . . . . . . . 12 (𝑦 = 𝑐 → (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦)) = (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑐)))
83 eqid 2610 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦))) = (𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦)))
84 fvex 6113 . . . . . . . . . . . 12 (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑐)) ∈ V
8582, 83, 84fvmpt 6191 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) → ((𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦)))‘𝑐) = (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑐)))
8680, 85syl 17 . . . . . . . . . 10 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑦)))‘𝑐) = (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑐)))
8771, 86syl5eq 2656 . . . . . . . . 9 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)))‘𝑐) = (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) “ 𝑐)))
88 dmeq 5246 . . . . . . . . . . . . . . 15 (𝑥 = (rec(𝐺, ∅)‘suc 𝑏) → dom 𝑥 = dom (rec(𝐺, ∅)‘suc 𝑏))
8988pweqd 4113 . . . . . . . . . . . . . 14 (𝑥 = (rec(𝐺, ∅)‘suc 𝑏) → 𝒫 dom 𝑥 = 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏))
90 imaeq1 5380 . . . . . . . . . . . . . . 15 (𝑥 = (rec(𝐺, ∅)‘suc 𝑏) → (𝑥𝑦) = ((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦))
9190fveq2d 6107 . . . . . . . . . . . . . 14 (𝑥 = (rec(𝐺, ∅)‘suc 𝑏) → (𝐹‘(𝑥𝑦)) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))
9289, 91mpteq12dv 4663 . . . . . . . . . . . . 13 (𝑥 = (rec(𝐺, ∅)‘suc 𝑏) → (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥𝑦))) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦))))
9359dmex 6991 . . . . . . . . . . . . . . 15 dom (rec(𝐺, ∅)‘suc 𝑏) ∈ V
9493pwex 4774 . . . . . . . . . . . . . 14 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ∈ V
9594mptex 6390 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦))) ∈ V
9692, 33, 95fvmpt 6191 . . . . . . . . . . . 12 ((rec(𝐺, ∅)‘suc 𝑏) ∈ V → (𝐺‘(rec(𝐺, ∅)‘suc 𝑏)) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦))))
9759, 96ax-mp 5 . . . . . . . . . . 11 (𝐺‘(rec(𝐺, ∅)‘suc 𝑏)) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))
9897fveq1i 6104 . . . . . . . . . 10 ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐) = ((𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))‘𝑐)
99 r1tr 8522 . . . . . . . . . . . . . . 15 Tr (𝑅1‘suc 𝑏)
10099a1i 11 . . . . . . . . . . . . . 14 (𝑏 ∈ ω → Tr (𝑅1‘suc 𝑏))
101 dftr4 4685 . . . . . . . . . . . . . 14 (Tr (𝑅1‘suc 𝑏) ↔ (𝑅1‘suc 𝑏) ⊆ 𝒫 (𝑅1‘suc 𝑏))
102100, 101sylib 207 . . . . . . . . . . . . 13 (𝑏 ∈ ω → (𝑅1‘suc 𝑏) ⊆ 𝒫 (𝑅1‘suc 𝑏))
103102sselda 3568 . . . . . . . . . . . 12 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → 𝑐 ∈ 𝒫 (𝑅1‘suc 𝑏))
104 f1odm 6054 . . . . . . . . . . . . . . 15 ((rec(𝐺, ∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc 𝑏)) → dom (rec(𝐺, ∅)‘suc 𝑏) = (𝑅1‘suc 𝑏))
10535, 104syl 17 . . . . . . . . . . . . . 14 (𝑏 ∈ ω → dom (rec(𝐺, ∅)‘suc 𝑏) = (𝑅1‘suc 𝑏))
106105pweqd 4113 . . . . . . . . . . . . 13 (𝑏 ∈ ω → 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) = 𝒫 (𝑅1‘suc 𝑏))
107106adantr 480 . . . . . . . . . . . 12 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) = 𝒫 (𝑅1‘suc 𝑏))
108103, 107eleqtrrd 2691 . . . . . . . . . . 11 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → 𝑐 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏))
109 imaeq2 5381 . . . . . . . . . . . . 13 (𝑦 = 𝑐 → ((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦) = ((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐))
110109fveq2d 6107 . . . . . . . . . . . 12 (𝑦 = 𝑐 → (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐)))
111 eqid 2610 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦))) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))
112 fvex 6113 . . . . . . . . . . . 12 (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐)) ∈ V
113110, 111, 112fvmpt 6191 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) → ((𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))‘𝑐) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐)))
114108, 113syl 17 . . . . . . . . . 10 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))‘𝑐) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐)))
11598, 114syl5eq 2656 . . . . . . . . 9 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐)))
11658, 87, 1153eqtr4d 2654 . . . . . . . 8 ((𝑏 ∈ ω ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)))‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐))
117116adantlr 747 . . . . . . 7 (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)))‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐))
118 fveq2 6103 . . . . . . . . 9 ((rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) → (𝐺‘(rec(𝐺, ∅)‘𝑏)) = (𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))))
119118fveq1d 6105 . . . . . . . 8 ((rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) → ((𝐺‘(rec(𝐺, ∅)‘𝑏))‘𝑐) = ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)))‘𝑐))
120119ad2antlr 759 . . . . . . 7 (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((𝐺‘(rec(𝐺, ∅)‘𝑏))‘𝑐) = ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)))‘𝑐))
121 rdgsuc 7407 . . . . . . . . . 10 (suc 𝑏 ∈ On → (rec(𝐺, ∅)‘suc suc 𝑏) = (𝐺‘(rec(𝐺, ∅)‘suc 𝑏)))
12244, 121syl 17 . . . . . . . . 9 (𝑏 ∈ ω → (rec(𝐺, ∅)‘suc suc 𝑏) = (𝐺‘(rec(𝐺, ∅)‘suc 𝑏)))
123122fveq1d 6105 . . . . . . . 8 (𝑏 ∈ ω → ((rec(𝐺, ∅)‘suc suc 𝑏)‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐))
124123ad2antrr 758 . . . . . . 7 (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((rec(𝐺, ∅)‘suc suc 𝑏)‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐))
125117, 120, 1243eqtr4rd 2655 . . . . . 6 (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((rec(𝐺, ∅)‘suc suc 𝑏)‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘𝑏))‘𝑐))
126 fvres 6117 . . . . . . 7 (𝑐 ∈ (𝑅1‘suc 𝑏) → (((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc 𝑏))‘𝑐) = ((rec(𝐺, ∅)‘suc suc 𝑏)‘𝑐))
127126adantl 481 . . . . . 6 (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → (((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc 𝑏))‘𝑐) = ((rec(𝐺, ∅)‘suc suc 𝑏)‘𝑐))
128 rdgsuc 7407 . . . . . . . . 9 (𝑏 ∈ On → (rec(𝐺, ∅)‘suc 𝑏) = (𝐺‘(rec(𝐺, ∅)‘𝑏)))
12950, 128syl 17 . . . . . . . 8 (𝑏 ∈ ω → (rec(𝐺, ∅)‘suc 𝑏) = (𝐺‘(rec(𝐺, ∅)‘𝑏)))
130129fveq1d 6105 . . . . . . 7 (𝑏 ∈ ω → ((rec(𝐺, ∅)‘suc 𝑏)‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘𝑏))‘𝑐))
131130ad2antrr 758 . . . . . 6 (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((rec(𝐺, ∅)‘suc 𝑏)‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘𝑏))‘𝑐))
132125, 127, 1313eqtr4rd 2655 . . . . 5 (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc 𝑏)) → ((rec(𝐺, ∅)‘suc 𝑏)‘𝑐) = (((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc 𝑏))‘𝑐))
13338, 49, 132eqfnfvd 6222 . . . 4 ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏))) → (rec(𝐺, ∅)‘suc 𝑏) = ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc 𝑏)))
134133ex 449 . . 3 (𝑏 ∈ ω → ((rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1𝑏)) → (rec(𝐺, ∅)‘suc 𝑏) = ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc 𝑏))))
1356, 12, 18, 24, 30, 134finds 6984 . 2 (𝐴 ∈ ω → (rec(𝐺, ∅)‘𝐴) = ((rec(𝐺, ∅)‘suc 𝐴) ↾ (𝑅1𝐴)))
136 resss 5342 . 2 ((rec(𝐺, ∅)‘suc 𝐴) ↾ (𝑅1𝐴)) ⊆ (rec(𝐺, ∅)‘suc 𝐴)
137135, 136syl6eqss 3618 1 (𝐴 ∈ ω → (rec(𝐺, ∅)‘𝐴) ⊆ (rec(𝐺, ∅)‘suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   ciun 4455  cmpt 4643  Tr wtr 4680   × cxp 5036  dom cdm 5038  cres 5040  cima 5041  Oncon0 5640  suc csuc 5642   Fn wfn 5799  1-1-ontowf1o 5803  cfv 5804  ωcom 6957  reccrdg 7392  Fincfn 7841  𝑅1cr1 8508  cardccrd 8644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-r1 8510  df-card 8648  df-cda 8873
This theorem is referenced by:  ackbij2lem4  8947
  Copyright terms: Public domain W3C validator