Step | Hyp | Ref
| Expression |
1 | | fveq2 6103 |
. . . 4
⊢ (𝑎 = ∅ → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘∅)) |
2 | | suceq 5707 |
. . . . . 6
⊢ (𝑎 = ∅ → suc 𝑎 = suc ∅) |
3 | 2 | fveq2d 6107 |
. . . . 5
⊢ (𝑎 = ∅ → (rec(𝐺, ∅)‘suc 𝑎) = (rec(𝐺, ∅)‘suc
∅)) |
4 | | fveq2 6103 |
. . . . 5
⊢ (𝑎 = ∅ →
(𝑅1‘𝑎) =
(𝑅1‘∅)) |
5 | 3, 4 | reseq12d 5318 |
. . . 4
⊢ (𝑎 = ∅ → ((rec(𝐺, ∅)‘suc 𝑎) ↾
(𝑅1‘𝑎)) = ((rec(𝐺, ∅)‘suc ∅) ↾
(𝑅1‘∅))) |
6 | 1, 5 | eqeq12d 2625 |
. . 3
⊢ (𝑎 = ∅ → ((rec(𝐺, ∅)‘𝑎) = ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1‘𝑎)) ↔ (rec(𝐺, ∅)‘∅) = ((rec(𝐺, ∅)‘suc ∅)
↾ (𝑅1‘∅)))) |
7 | | fveq2 6103 |
. . . 4
⊢ (𝑎 = 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝑏)) |
8 | | suceq 5707 |
. . . . . 6
⊢ (𝑎 = 𝑏 → suc 𝑎 = suc 𝑏) |
9 | 8 | fveq2d 6107 |
. . . . 5
⊢ (𝑎 = 𝑏 → (rec(𝐺, ∅)‘suc 𝑎) = (rec(𝐺, ∅)‘suc 𝑏)) |
10 | | fveq2 6103 |
. . . . 5
⊢ (𝑎 = 𝑏 → (𝑅1‘𝑎) =
(𝑅1‘𝑏)) |
11 | 9, 10 | reseq12d 5318 |
. . . 4
⊢ (𝑎 = 𝑏 → ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1‘𝑎)) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) |
12 | 7, 11 | eqeq12d 2625 |
. . 3
⊢ (𝑎 = 𝑏 → ((rec(𝐺, ∅)‘𝑎) = ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1‘𝑎)) ↔ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)))) |
13 | | fveq2 6103 |
. . . 4
⊢ (𝑎 = suc 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘suc 𝑏)) |
14 | | suceq 5707 |
. . . . . 6
⊢ (𝑎 = suc 𝑏 → suc 𝑎 = suc suc 𝑏) |
15 | 14 | fveq2d 6107 |
. . . . 5
⊢ (𝑎 = suc 𝑏 → (rec(𝐺, ∅)‘suc 𝑎) = (rec(𝐺, ∅)‘suc suc 𝑏)) |
16 | | fveq2 6103 |
. . . . 5
⊢ (𝑎 = suc 𝑏 → (𝑅1‘𝑎) =
(𝑅1‘suc 𝑏)) |
17 | 15, 16 | reseq12d 5318 |
. . . 4
⊢ (𝑎 = suc 𝑏 → ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1‘𝑎)) = ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc
𝑏))) |
18 | 13, 17 | eqeq12d 2625 |
. . 3
⊢ (𝑎 = suc 𝑏 → ((rec(𝐺, ∅)‘𝑎) = ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1‘𝑎)) ↔ (rec(𝐺, ∅)‘suc 𝑏) = ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc
𝑏)))) |
19 | | fveq2 6103 |
. . . 4
⊢ (𝑎 = 𝐴 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝐴)) |
20 | | suceq 5707 |
. . . . . 6
⊢ (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴) |
21 | 20 | fveq2d 6107 |
. . . . 5
⊢ (𝑎 = 𝐴 → (rec(𝐺, ∅)‘suc 𝑎) = (rec(𝐺, ∅)‘suc 𝐴)) |
22 | | fveq2 6103 |
. . . . 5
⊢ (𝑎 = 𝐴 → (𝑅1‘𝑎) =
(𝑅1‘𝐴)) |
23 | 21, 22 | reseq12d 5318 |
. . . 4
⊢ (𝑎 = 𝐴 → ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1‘𝑎)) = ((rec(𝐺, ∅)‘suc 𝐴) ↾ (𝑅1‘𝐴))) |
24 | 19, 23 | eqeq12d 2625 |
. . 3
⊢ (𝑎 = 𝐴 → ((rec(𝐺, ∅)‘𝑎) = ((rec(𝐺, ∅)‘suc 𝑎) ↾ (𝑅1‘𝑎)) ↔ (rec(𝐺, ∅)‘𝐴) = ((rec(𝐺, ∅)‘suc 𝐴) ↾ (𝑅1‘𝐴)))) |
25 | | res0 5321 |
. . . 4
⊢
((rec(𝐺,
∅)‘suc ∅) ↾ ∅) = ∅ |
26 | | r10 8514 |
. . . . 5
⊢
(𝑅1‘∅) = ∅ |
27 | 26 | reseq2i 5314 |
. . . 4
⊢
((rec(𝐺,
∅)‘suc ∅) ↾ (𝑅1‘∅)) =
((rec(𝐺, ∅)‘suc
∅) ↾ ∅) |
28 | | 0ex 4718 |
. . . . 5
⊢ ∅
∈ V |
29 | 28 | rdg0 7404 |
. . . 4
⊢
(rec(𝐺,
∅)‘∅) = ∅ |
30 | 25, 27, 29 | 3eqtr4ri 2643 |
. . 3
⊢
(rec(𝐺,
∅)‘∅) = ((rec(𝐺, ∅)‘suc ∅) ↾
(𝑅1‘∅)) |
31 | | peano2 6978 |
. . . . . . . 8
⊢ (𝑏 ∈ ω → suc 𝑏 ∈
ω) |
32 | | ackbij.f |
. . . . . . . . 9
⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
33 | | ackbij.g |
. . . . . . . . 9
⊢ 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥 “ 𝑦)))) |
34 | 32, 33 | ackbij2lem2 8945 |
. . . . . . . 8
⊢ (suc
𝑏 ∈ ω →
(rec(𝐺, ∅)‘suc
𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏))) |
35 | 31, 34 | syl 17 |
. . . . . . 7
⊢ (𝑏 ∈ ω →
(rec(𝐺, ∅)‘suc
𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏))) |
36 | | f1ofn 6051 |
. . . . . . 7
⊢
((rec(𝐺,
∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏)) → (rec(𝐺, ∅)‘suc 𝑏) Fn
(𝑅1‘suc 𝑏)) |
37 | 35, 36 | syl 17 |
. . . . . 6
⊢ (𝑏 ∈ ω →
(rec(𝐺, ∅)‘suc
𝑏) Fn
(𝑅1‘suc 𝑏)) |
38 | 37 | adantr 480 |
. . . . 5
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) → (rec(𝐺, ∅)‘suc 𝑏) Fn
(𝑅1‘suc 𝑏)) |
39 | | peano2 6978 |
. . . . . . . 8
⊢ (suc
𝑏 ∈ ω → suc
suc 𝑏 ∈
ω) |
40 | 32, 33 | ackbij2lem2 8945 |
. . . . . . . 8
⊢ (suc suc
𝑏 ∈ ω →
(rec(𝐺, ∅)‘suc
suc 𝑏):(𝑅1‘suc suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
suc 𝑏))) |
41 | | f1ofn 6051 |
. . . . . . . 8
⊢
((rec(𝐺,
∅)‘suc suc 𝑏):(𝑅1‘suc suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
suc 𝑏)) → (rec(𝐺, ∅)‘suc suc 𝑏) Fn
(𝑅1‘suc suc 𝑏)) |
42 | 31, 39, 40, 41 | 4syl 19 |
. . . . . . 7
⊢ (𝑏 ∈ ω →
(rec(𝐺, ∅)‘suc
suc 𝑏) Fn
(𝑅1‘suc suc 𝑏)) |
43 | | nnon 6963 |
. . . . . . . . 9
⊢ (suc
𝑏 ∈ ω → suc
𝑏 ∈
On) |
44 | 31, 43 | syl 17 |
. . . . . . . 8
⊢ (𝑏 ∈ ω → suc 𝑏 ∈ On) |
45 | | r1sssuc 8529 |
. . . . . . . 8
⊢ (suc
𝑏 ∈ On →
(𝑅1‘suc 𝑏) ⊆ (𝑅1‘suc
suc 𝑏)) |
46 | 44, 45 | syl 17 |
. . . . . . 7
⊢ (𝑏 ∈ ω →
(𝑅1‘suc 𝑏) ⊆ (𝑅1‘suc
suc 𝑏)) |
47 | | fnssres 5918 |
. . . . . . 7
⊢
(((rec(𝐺,
∅)‘suc suc 𝑏)
Fn (𝑅1‘suc suc 𝑏) ∧ (𝑅1‘suc
𝑏) ⊆
(𝑅1‘suc suc 𝑏)) → ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc
𝑏)) Fn
(𝑅1‘suc 𝑏)) |
48 | 42, 46, 47 | syl2anc 691 |
. . . . . 6
⊢ (𝑏 ∈ ω →
((rec(𝐺, ∅)‘suc
suc 𝑏) ↾
(𝑅1‘suc 𝑏)) Fn (𝑅1‘suc 𝑏)) |
49 | 48 | adantr 480 |
. . . . 5
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) → ((rec(𝐺, ∅)‘suc suc 𝑏) ↾
(𝑅1‘suc 𝑏)) Fn (𝑅1‘suc 𝑏)) |
50 | | nnon 6963 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ ω → 𝑏 ∈ On) |
51 | | r1suc 8516 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ On →
(𝑅1‘suc 𝑏) = 𝒫
(𝑅1‘𝑏)) |
52 | 50, 51 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ ω →
(𝑅1‘suc 𝑏) = 𝒫
(𝑅1‘𝑏)) |
53 | 52 | eleq2d 2673 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ ω → (𝑐 ∈
(𝑅1‘suc 𝑏) ↔ 𝑐 ∈ 𝒫
(𝑅1‘𝑏))) |
54 | 53 | biimpa 500 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → 𝑐 ∈ 𝒫
(𝑅1‘𝑏)) |
55 | 54 | elpwid 4118 |
. . . . . . . . . . 11
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → 𝑐 ⊆ (𝑅1‘𝑏)) |
56 | | resima2 5352 |
. . . . . . . . . . 11
⊢ (𝑐 ⊆
(𝑅1‘𝑏) → (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑐) = ((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐)) |
57 | 55, 56 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑐) = ((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐)) |
58 | 57 | fveq2d 6107 |
. . . . . . . . 9
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑐)) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐))) |
59 | | fvex 6113 |
. . . . . . . . . . . . 13
⊢
(rec(𝐺,
∅)‘suc 𝑏)
∈ V |
60 | 59 | resex 5363 |
. . . . . . . . . . . 12
⊢
((rec(𝐺,
∅)‘suc 𝑏)
↾ (𝑅1‘𝑏)) ∈ V |
61 | | dmeq 5246 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) → dom 𝑥 = dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) |
62 | 61 | pweqd 4113 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) → 𝒫 dom 𝑥 = 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾
(𝑅1‘𝑏))) |
63 | | imaeq1 5380 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) → (𝑥 “ 𝑦) = (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦)) |
64 | 63 | fveq2d 6107 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) → (𝐹‘(𝑥 “ 𝑦)) = (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦))) |
65 | 62, 64 | mpteq12dv 4663 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) → (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥 “ 𝑦))) = (𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦)))) |
66 | 60 | dmex 6991 |
. . . . . . . . . . . . . . 15
⊢ dom
((rec(𝐺, ∅)‘suc
𝑏) ↾
(𝑅1‘𝑏)) ∈ V |
67 | 66 | pwex 4774 |
. . . . . . . . . . . . . 14
⊢ 𝒫
dom ((rec(𝐺,
∅)‘suc 𝑏)
↾ (𝑅1‘𝑏)) ∈ V |
68 | 67 | mptex 6390 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝒫 dom
((rec(𝐺, ∅)‘suc
𝑏) ↾
(𝑅1‘𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦))) ∈ V |
69 | 65, 33, 68 | fvmpt 6191 |
. . . . . . . . . . . 12
⊢
(((rec(𝐺,
∅)‘suc 𝑏)
↾ (𝑅1‘𝑏)) ∈ V → (𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) = (𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦)))) |
70 | 60, 69 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) = (𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦))) |
71 | 70 | fveq1i 6104 |
. . . . . . . . . 10
⊢ ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)))‘𝑐) = ((𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦)))‘𝑐) |
72 | | r1sssuc 8529 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 ∈ On →
(𝑅1‘𝑏) ⊆ (𝑅1‘suc
𝑏)) |
73 | 50, 72 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ∈ ω →
(𝑅1‘𝑏) ⊆ (𝑅1‘suc
𝑏)) |
74 | | fnssres 5918 |
. . . . . . . . . . . . . . . 16
⊢
(((rec(𝐺,
∅)‘suc 𝑏) Fn
(𝑅1‘suc 𝑏) ∧ (𝑅1‘𝑏) ⊆
(𝑅1‘suc 𝑏)) → ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) Fn
(𝑅1‘𝑏)) |
75 | 37, 73, 74 | syl2anc 691 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ ω →
((rec(𝐺, ∅)‘suc
𝑏) ↾
(𝑅1‘𝑏)) Fn (𝑅1‘𝑏)) |
76 | | fndm 5904 |
. . . . . . . . . . . . . . 15
⊢
(((rec(𝐺,
∅)‘suc 𝑏)
↾ (𝑅1‘𝑏)) Fn (𝑅1‘𝑏) → dom ((rec(𝐺, ∅)‘suc 𝑏) ↾
(𝑅1‘𝑏)) = (𝑅1‘𝑏)) |
77 | 75, 76 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ ω → dom
((rec(𝐺, ∅)‘suc
𝑏) ↾
(𝑅1‘𝑏)) = (𝑅1‘𝑏)) |
78 | 77 | pweqd 4113 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ ω → 𝒫
dom ((rec(𝐺,
∅)‘suc 𝑏)
↾ (𝑅1‘𝑏)) = 𝒫
(𝑅1‘𝑏)) |
79 | 78 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾
(𝑅1‘𝑏)) = 𝒫
(𝑅1‘𝑏)) |
80 | 54, 79 | eleqtrrd 2691 |
. . . . . . . . . . 11
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → 𝑐 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) |
81 | | imaeq2 5381 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑐 → (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦) = (((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑐)) |
82 | 81 | fveq2d 6107 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑐 → (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦)) = (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑐))) |
83 | | eqid 2610 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝒫 dom
((rec(𝐺, ∅)‘suc
𝑏) ↾
(𝑅1‘𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦))) = (𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦))) |
84 | | fvex 6113 |
. . . . . . . . . . . 12
⊢ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑐)) ∈ V |
85 | 82, 83, 84 | fvmpt 6191 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝒫 dom
((rec(𝐺, ∅)‘suc
𝑏) ↾
(𝑅1‘𝑏)) → ((𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦)))‘𝑐) = (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑐))) |
86 | 80, 85 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → ((𝑦 ∈ 𝒫 dom ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) ↦ (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑦)))‘𝑐) = (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑐))) |
87 | 71, 86 | syl5eq 2656 |
. . . . . . . . 9
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)))‘𝑐) = (𝐹‘(((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)) “ 𝑐))) |
88 | | dmeq 5246 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (rec(𝐺, ∅)‘suc 𝑏) → dom 𝑥 = dom (rec(𝐺, ∅)‘suc 𝑏)) |
89 | 88 | pweqd 4113 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (rec(𝐺, ∅)‘suc 𝑏) → 𝒫 dom 𝑥 = 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏)) |
90 | | imaeq1 5380 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (rec(𝐺, ∅)‘suc 𝑏) → (𝑥 “ 𝑦) = ((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)) |
91 | 90 | fveq2d 6107 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (rec(𝐺, ∅)‘suc 𝑏) → (𝐹‘(𝑥 “ 𝑦)) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦))) |
92 | 89, 91 | mpteq12dv 4663 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (rec(𝐺, ∅)‘suc 𝑏) → (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥 “ 𝑦))) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))) |
93 | 59 | dmex 6991 |
. . . . . . . . . . . . . . 15
⊢ dom
(rec(𝐺, ∅)‘suc
𝑏) ∈
V |
94 | 93 | pwex 4774 |
. . . . . . . . . . . . . 14
⊢ 𝒫
dom (rec(𝐺,
∅)‘suc 𝑏)
∈ V |
95 | 94 | mptex 6390 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦))) ∈ V |
96 | 92, 33, 95 | fvmpt 6191 |
. . . . . . . . . . . 12
⊢
((rec(𝐺,
∅)‘suc 𝑏)
∈ V → (𝐺‘(rec(𝐺, ∅)‘suc 𝑏)) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))) |
97 | 59, 96 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝐺‘(rec(𝐺, ∅)‘suc 𝑏)) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦))) |
98 | 97 | fveq1i 6104 |
. . . . . . . . . 10
⊢ ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐) = ((𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))‘𝑐) |
99 | | r1tr 8522 |
. . . . . . . . . . . . . . 15
⊢ Tr
(𝑅1‘suc 𝑏) |
100 | 99 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ ω → Tr
(𝑅1‘suc 𝑏)) |
101 | | dftr4 4685 |
. . . . . . . . . . . . . 14
⊢ (Tr
(𝑅1‘suc 𝑏) ↔ (𝑅1‘suc
𝑏) ⊆ 𝒫
(𝑅1‘suc 𝑏)) |
102 | 100, 101 | sylib 207 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ ω →
(𝑅1‘suc 𝑏) ⊆ 𝒫
(𝑅1‘suc 𝑏)) |
103 | 102 | sselda 3568 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → 𝑐 ∈ 𝒫
(𝑅1‘suc 𝑏)) |
104 | | f1odm 6054 |
. . . . . . . . . . . . . . 15
⊢
((rec(𝐺,
∅)‘suc 𝑏):(𝑅1‘suc 𝑏)–1-1-onto→(card‘(𝑅1‘suc
𝑏)) → dom (rec(𝐺, ∅)‘suc 𝑏) =
(𝑅1‘suc 𝑏)) |
105 | 35, 104 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ ω → dom
(rec(𝐺, ∅)‘suc
𝑏) =
(𝑅1‘suc 𝑏)) |
106 | 105 | pweqd 4113 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ ω → 𝒫
dom (rec(𝐺,
∅)‘suc 𝑏) =
𝒫 (𝑅1‘suc 𝑏)) |
107 | 106 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) = 𝒫
(𝑅1‘suc 𝑏)) |
108 | 103, 107 | eleqtrrd 2691 |
. . . . . . . . . . 11
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → 𝑐 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏)) |
109 | | imaeq2 5381 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑐 → ((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦) = ((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐)) |
110 | 109 | fveq2d 6107 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑐 → (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐))) |
111 | | eqid 2610 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦))) = (𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦))) |
112 | | fvex 6113 |
. . . . . . . . . . . 12
⊢ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐)) ∈ V |
113 | 110, 111,
112 | fvmpt 6191 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) → ((𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))‘𝑐) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐))) |
114 | 108, 113 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → ((𝑦 ∈ 𝒫 dom (rec(𝐺, ∅)‘suc 𝑏) ↦ (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑦)))‘𝑐) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐))) |
115 | 98, 114 | syl5eq 2656 |
. . . . . . . . 9
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐) = (𝐹‘((rec(𝐺, ∅)‘suc 𝑏) “ 𝑐))) |
116 | 58, 87, 115 | 3eqtr4d 2654 |
. . . . . . . 8
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈
(𝑅1‘suc 𝑏)) → ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)))‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐)) |
117 | 116 | adantlr 747 |
. . . . . . 7
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc
𝑏)) → ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)))‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐)) |
118 | | fveq2 6103 |
. . . . . . . . 9
⊢
((rec(𝐺,
∅)‘𝑏) =
((rec(𝐺, ∅)‘suc
𝑏) ↾
(𝑅1‘𝑏)) → (𝐺‘(rec(𝐺, ∅)‘𝑏)) = (𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)))) |
119 | 118 | fveq1d 6105 |
. . . . . . . 8
⊢
((rec(𝐺,
∅)‘𝑏) =
((rec(𝐺, ∅)‘suc
𝑏) ↾
(𝑅1‘𝑏)) → ((𝐺‘(rec(𝐺, ∅)‘𝑏))‘𝑐) = ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)))‘𝑐)) |
120 | 119 | ad2antlr 759 |
. . . . . . 7
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc
𝑏)) → ((𝐺‘(rec(𝐺, ∅)‘𝑏))‘𝑐) = ((𝐺‘((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏)))‘𝑐)) |
121 | | rdgsuc 7407 |
. . . . . . . . . 10
⊢ (suc
𝑏 ∈ On →
(rec(𝐺, ∅)‘suc
suc 𝑏) = (𝐺‘(rec(𝐺, ∅)‘suc 𝑏))) |
122 | 44, 121 | syl 17 |
. . . . . . . . 9
⊢ (𝑏 ∈ ω →
(rec(𝐺, ∅)‘suc
suc 𝑏) = (𝐺‘(rec(𝐺, ∅)‘suc 𝑏))) |
123 | 122 | fveq1d 6105 |
. . . . . . . 8
⊢ (𝑏 ∈ ω →
((rec(𝐺, ∅)‘suc
suc 𝑏)‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐)) |
124 | 123 | ad2antrr 758 |
. . . . . . 7
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc
𝑏)) → ((rec(𝐺, ∅)‘suc suc 𝑏)‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘suc 𝑏))‘𝑐)) |
125 | 117, 120,
124 | 3eqtr4rd 2655 |
. . . . . 6
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc
𝑏)) → ((rec(𝐺, ∅)‘suc suc 𝑏)‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘𝑏))‘𝑐)) |
126 | | fvres 6117 |
. . . . . . 7
⊢ (𝑐 ∈
(𝑅1‘suc 𝑏) → (((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc
𝑏))‘𝑐) = ((rec(𝐺, ∅)‘suc suc 𝑏)‘𝑐)) |
127 | 126 | adantl 481 |
. . . . . 6
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc
𝑏)) → (((rec(𝐺, ∅)‘suc suc 𝑏) ↾
(𝑅1‘suc 𝑏))‘𝑐) = ((rec(𝐺, ∅)‘suc suc 𝑏)‘𝑐)) |
128 | | rdgsuc 7407 |
. . . . . . . . 9
⊢ (𝑏 ∈ On → (rec(𝐺, ∅)‘suc 𝑏) = (𝐺‘(rec(𝐺, ∅)‘𝑏))) |
129 | 50, 128 | syl 17 |
. . . . . . . 8
⊢ (𝑏 ∈ ω →
(rec(𝐺, ∅)‘suc
𝑏) = (𝐺‘(rec(𝐺, ∅)‘𝑏))) |
130 | 129 | fveq1d 6105 |
. . . . . . 7
⊢ (𝑏 ∈ ω →
((rec(𝐺, ∅)‘suc
𝑏)‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘𝑏))‘𝑐)) |
131 | 130 | ad2antrr 758 |
. . . . . 6
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc
𝑏)) → ((rec(𝐺, ∅)‘suc 𝑏)‘𝑐) = ((𝐺‘(rec(𝐺, ∅)‘𝑏))‘𝑐)) |
132 | 125, 127,
131 | 3eqtr4rd 2655 |
. . . . 5
⊢ (((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) ∧ 𝑐 ∈ (𝑅1‘suc
𝑏)) → ((rec(𝐺, ∅)‘suc 𝑏)‘𝑐) = (((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc
𝑏))‘𝑐)) |
133 | 38, 49, 132 | eqfnfvd 6222 |
. . . 4
⊢ ((𝑏 ∈ ω ∧ (rec(𝐺, ∅)‘𝑏) = ((rec(𝐺, ∅)‘suc 𝑏) ↾ (𝑅1‘𝑏))) → (rec(𝐺, ∅)‘suc 𝑏) = ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc
𝑏))) |
134 | 133 | ex 449 |
. . 3
⊢ (𝑏 ∈ ω →
((rec(𝐺,
∅)‘𝑏) =
((rec(𝐺, ∅)‘suc
𝑏) ↾
(𝑅1‘𝑏)) → (rec(𝐺, ∅)‘suc 𝑏) = ((rec(𝐺, ∅)‘suc suc 𝑏) ↾ (𝑅1‘suc
𝑏)))) |
135 | 6, 12, 18, 24, 30, 134 | finds 6984 |
. 2
⊢ (𝐴 ∈ ω →
(rec(𝐺,
∅)‘𝐴) =
((rec(𝐺, ∅)‘suc
𝐴) ↾
(𝑅1‘𝐴))) |
136 | | resss 5342 |
. 2
⊢
((rec(𝐺,
∅)‘suc 𝐴)
↾ (𝑅1‘𝐴)) ⊆ (rec(𝐺, ∅)‘suc 𝐴) |
137 | 135, 136 | syl6eqss 3618 |
1
⊢ (𝐴 ∈ ω →
(rec(𝐺,
∅)‘𝐴) ⊆
(rec(𝐺, ∅)‘suc
𝐴)) |