Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij2lem4 Structured version   Visualization version   GIF version

Theorem ackbij2lem4 8947
 Description: Lemma for ackbij2 8948. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypotheses
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
ackbij.g 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥𝑦))))
Assertion
Ref Expression
ackbij2lem4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐴))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ackbij2lem4
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . 3 (𝑎 = 𝐵 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝐵))
21sseq2d 3596 . 2 (𝑎 = 𝐵 → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑎) ↔ (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐵)))
3 fveq2 6103 . . 3 (𝑎 = 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝑏))
43sseq2d 3596 . 2 (𝑎 = 𝑏 → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑎) ↔ (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑏)))
5 fveq2 6103 . . 3 (𝑎 = suc 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘suc 𝑏))
65sseq2d 3596 . 2 (𝑎 = suc 𝑏 → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑎) ↔ (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘suc 𝑏)))
7 fveq2 6103 . . 3 (𝑎 = 𝐴 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝐴))
87sseq2d 3596 . 2 (𝑎 = 𝐴 → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑎) ↔ (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐴)))
9 ssid 3587 . . 3 (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐵)
109a1i 11 . 2 (𝐵 ∈ ω → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐵))
11 ackbij.f . . . . 5 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
12 ackbij.g . . . . 5 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥𝑦))))
1311, 12ackbij2lem3 8946 . . . 4 (𝑏 ∈ ω → (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘suc 𝑏))
1413ad2antrr 758 . . 3 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑏) → (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘suc 𝑏))
15 sstr2 3575 . . 3 ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑏) → ((rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘suc 𝑏) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘suc 𝑏)))
1614, 15syl5com 31 . 2 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑏) → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑏) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘suc 𝑏)))
172, 4, 6, 8, 10, 16findsg 6985 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108  {csn 4125  ∪ ciun 4455   ↦ cmpt 4643   × cxp 5036  dom cdm 5038   “ cima 5041  suc csuc 5642  ‘cfv 5804  ωcom 6957  reccrdg 7392  Fincfn 7841  cardccrd 8644 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-r1 8510  df-card 8648  df-cda 8873 This theorem is referenced by:  ackbij2  8948
 Copyright terms: Public domain W3C validator