MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1 Structured version   Visualization version   GIF version

Theorem 2lgslem1 24919
Description: Lemma 1 for 2lgs 24932. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2lgslem1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (#‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
Distinct variable group:   𝑃,𝑖,𝑥

Proof of Theorem 2lgslem1
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2lgslem1a 24916 . . 3 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
21fveq2d 6107 . 2 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (#‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (#‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}))
3 ovex 6577 . . 3 (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∈ V
43mptex 6390 . . . . 5 (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)) ∈ V
5 f1oeq1 6040 . . . . 5 (𝑓 = (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)) → (𝑓:(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)} ↔ (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)):(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}))
6 eqid 2610 . . . . . 6 (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) = (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))
7 eqid 2610 . . . . . 6 (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)) = (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2))
86, 72lgslem1b 24917 . . . . 5 (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)):(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}
94, 5, 8ceqsexv2d 3216 . . . 4 𝑓 𝑓:(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}
109a1i 11 . . 3 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ∃𝑓 𝑓:(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
11 hasheqf1oi 13002 . . 3 ((((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∈ V → (∃𝑓 𝑓:(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)} → (#‘(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) = (#‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})))
123, 10, 11mpsyl 66 . 2 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (#‘(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) = (#‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}))
13 prmz 15227 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1413zred 11358 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
15 4re 10974 . . . . . . . 8 4 ∈ ℝ
1615a1i 11 . . . . . . 7 (𝑃 ∈ ℙ → 4 ∈ ℝ)
17 4ne0 10994 . . . . . . . 8 4 ≠ 0
1817a1i 11 . . . . . . 7 (𝑃 ∈ ℙ → 4 ≠ 0)
1914, 16, 18redivcld 10732 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 / 4) ∈ ℝ)
2019flcld 12461 . . . . 5 (𝑃 ∈ ℙ → (⌊‘(𝑃 / 4)) ∈ ℤ)
2120adantr 480 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ∈ ℤ)
22 oddm1d2 14922 . . . . . 6 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
2313, 22syl 17 . . . . 5 (𝑃 ∈ ℙ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
2423biimpa 500 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℤ)
25 2lgslem1c 24918 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
26 eluz2 11569 . . . 4 (((𝑃 − 1) / 2) ∈ (ℤ‘(⌊‘(𝑃 / 4))) ↔ ((⌊‘(𝑃 / 4)) ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
2721, 24, 25, 26syl3anbrc 1239 . . 3 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ (ℤ‘(⌊‘(𝑃 / 4))))
28 hashfzp1 13078 . . 3 (((𝑃 − 1) / 2) ∈ (ℤ‘(⌊‘(𝑃 / 4))) → (#‘(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
2927, 28syl 17 . 2 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (#‘(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
302, 12, 293eqtr2d 2650 1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (#‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  {crab 2900  Vcvv 3173   class class class wbr 4583  cmpt 4643  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  2c2 10947  4c4 10949  cz 11254  cuz 11563  ...cfz 12197  cfl 12453   mod cmo 12530  #chash 12979  cdvds 14821  cprime 15223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fl 12455  df-mod 12531  df-hash 12980  df-dvds 14822  df-prm 15224
This theorem is referenced by:  2lgs  24932
  Copyright terms: Public domain W3C validator