MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1c Structured version   Visualization version   GIF version

Theorem 2lgslem1c 24918
Description: Lemma 3 for 2lgslem1 24919. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2lgslem1c ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))

Proof of Theorem 2lgslem1c
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 prmnn 15226 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2 nnnn0 11176 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
3 oddnn02np1 14910 . . . 4 (𝑃 ∈ ℕ0 → (¬ 2 ∥ 𝑃 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑃))
41, 2, 33syl 18 . . 3 (𝑃 ∈ ℙ → (¬ 2 ∥ 𝑃 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑃))
5 iftrue 4042 . . . . . . . . . 10 (2 ∥ 𝑛 → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = (𝑛 / 2))
65adantr 480 . . . . . . . . 9 ((2 ∥ 𝑛𝑛 ∈ ℕ0) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = (𝑛 / 2))
7 2nn 11062 . . . . . . . . . . 11 2 ∈ ℕ
8 nn0ledivnn 11817 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0 ∧ 2 ∈ ℕ) → (𝑛 / 2) ≤ 𝑛)
97, 8mpan2 703 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑛 / 2) ≤ 𝑛)
109adantl 481 . . . . . . . . 9 ((2 ∥ 𝑛𝑛 ∈ ℕ0) → (𝑛 / 2) ≤ 𝑛)
116, 10eqbrtrd 4605 . . . . . . . 8 ((2 ∥ 𝑛𝑛 ∈ ℕ0) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)
12 iffalse 4045 . . . . . . . . . 10 (¬ 2 ∥ 𝑛 → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = ((𝑛 − 1) / 2))
1312adantr 480 . . . . . . . . 9 ((¬ 2 ∥ 𝑛𝑛 ∈ ℕ0) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) = ((𝑛 − 1) / 2))
14 nn0re 11178 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
15 peano2rem 10227 . . . . . . . . . . . . 13 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
1615rehalfcld 11156 . . . . . . . . . . . 12 (𝑛 ∈ ℝ → ((𝑛 − 1) / 2) ∈ ℝ)
1714, 16syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → ((𝑛 − 1) / 2) ∈ ℝ)
1814rehalfcld 11156 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (𝑛 / 2) ∈ ℝ)
1914lem1d 10836 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑛 − 1) ≤ 𝑛)
2014, 15syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (𝑛 − 1) ∈ ℝ)
21 2re 10967 . . . . . . . . . . . . . . 15 2 ∈ ℝ
22 2pos 10989 . . . . . . . . . . . . . . 15 0 < 2
2321, 22pm3.2i 470 . . . . . . . . . . . . . 14 (2 ∈ ℝ ∧ 0 < 2)
2423a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (2 ∈ ℝ ∧ 0 < 2))
25 lediv1 10767 . . . . . . . . . . . . 13 (((𝑛 − 1) ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑛 − 1) ≤ 𝑛 ↔ ((𝑛 − 1) / 2) ≤ (𝑛 / 2)))
2620, 14, 24, 25syl3anc 1318 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → ((𝑛 − 1) ≤ 𝑛 ↔ ((𝑛 − 1) / 2) ≤ (𝑛 / 2)))
2719, 26mpbid 221 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → ((𝑛 − 1) / 2) ≤ (𝑛 / 2))
2817, 18, 14, 27, 9letrd 10073 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((𝑛 − 1) / 2) ≤ 𝑛)
2928adantl 481 . . . . . . . . 9 ((¬ 2 ∥ 𝑛𝑛 ∈ ℕ0) → ((𝑛 − 1) / 2) ≤ 𝑛)
3013, 29eqbrtrd 4605 . . . . . . . 8 ((¬ 2 ∥ 𝑛𝑛 ∈ ℕ0) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)
3111, 30pm2.61ian 827 . . . . . . 7 (𝑛 ∈ ℕ0 → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)
3231ad2antlr 759 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)) ≤ 𝑛)
33 nn0z 11277 . . . . . . . 8 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
3433adantl 481 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
35 eqcom 2617 . . . . . . . 8 (((2 · 𝑛) + 1) = 𝑃𝑃 = ((2 · 𝑛) + 1))
3635biimpi 205 . . . . . . 7 (((2 · 𝑛) + 1) = 𝑃𝑃 = ((2 · 𝑛) + 1))
37 flodddiv4 14975 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑃 = ((2 · 𝑛) + 1)) → (⌊‘(𝑃 / 4)) = if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)))
3834, 36, 37syl2an 493 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (⌊‘(𝑃 / 4)) = if(2 ∥ 𝑛, (𝑛 / 2), ((𝑛 − 1) / 2)))
39 oveq1 6556 . . . . . . . . . . 11 (𝑃 = ((2 · 𝑛) + 1) → (𝑃 − 1) = (((2 · 𝑛) + 1) − 1))
4039eqcoms 2618 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝑃 → (𝑃 − 1) = (((2 · 𝑛) + 1) − 1))
4140adantl 481 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (𝑃 − 1) = (((2 · 𝑛) + 1) − 1))
42 2nn0 11186 . . . . . . . . . . . . . 14 2 ∈ ℕ0
4342a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
44 id 22 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
4543, 44nn0mulcld 11233 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℕ0)
4645nn0cnd 11230 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℂ)
47 pncan1 10333 . . . . . . . . . . 11 ((2 · 𝑛) ∈ ℂ → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
4846, 47syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
4948ad2antlr 759 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
5041, 49eqtrd 2644 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (𝑃 − 1) = (2 · 𝑛))
5150oveq1d 6564 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → ((𝑃 − 1) / 2) = ((2 · 𝑛) / 2))
52 nn0cn 11179 . . . . . . . . 9 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
53 2cnd 10970 . . . . . . . . 9 (𝑛 ∈ ℕ0 → 2 ∈ ℂ)
54 2ne0 10990 . . . . . . . . . 10 2 ≠ 0
5554a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ0 → 2 ≠ 0)
5652, 53, 55divcan3d 10685 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((2 · 𝑛) / 2) = 𝑛)
5756ad2antlr 759 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → ((2 · 𝑛) / 2) = 𝑛)
5851, 57eqtrd 2644 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → ((𝑃 − 1) / 2) = 𝑛)
5932, 38, 583brtr4d 4615 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) ∧ ((2 · 𝑛) + 1) = 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
6059ex 449 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → (((2 · 𝑛) + 1) = 𝑃 → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
6160rexlimdva 3013 . . 3 (𝑃 ∈ ℙ → (∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑃 → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
624, 61sylbid 229 . 2 (𝑃 ∈ ℙ → (¬ 2 ∥ 𝑃 → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
6362imp 444 1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wrex 2897  ifcif 4036   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  4c4 10949  0cn0 11169  cz 11254  cfl 12453  cdvds 14821  cprime 15223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-dvds 14822  df-prm 15224
This theorem is referenced by:  2lgslem1  24919
  Copyright terms: Public domain W3C validator