MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1b Structured version   Visualization version   GIF version

Theorem 2lgslem1b 24917
Description: Lemma 2 for 2lgslem1 24919. (Contributed by AV, 18-Jun-2021.)
Hypotheses
Ref Expression
2lgslem1b.i 𝐼 = (𝐴...𝐵)
2lgslem1b.f 𝐹 = (𝑗𝐼 ↦ (𝑗 · 2))
Assertion
Ref Expression
2lgslem1b 𝐹:𝐼1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
Distinct variable group:   𝑖,𝐼,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑖,𝑗)   𝐵(𝑥,𝑖,𝑗)   𝐹(𝑥,𝑖,𝑗)

Proof of Theorem 2lgslem1b
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2lgslem1b.f . . . 4 𝐹 = (𝑗𝐼 ↦ (𝑗 · 2))
2 elfzelz 12213 . . . . . . 7 (𝑗 ∈ (𝐴...𝐵) → 𝑗 ∈ ℤ)
3 2lgslem1b.i . . . . . . 7 𝐼 = (𝐴...𝐵)
42, 3eleq2s 2706 . . . . . 6 (𝑗𝐼𝑗 ∈ ℤ)
5 2z 11286 . . . . . . 7 2 ∈ ℤ
65a1i 11 . . . . . 6 (𝑗𝐼 → 2 ∈ ℤ)
74, 6zmulcld 11364 . . . . 5 (𝑗𝐼 → (𝑗 · 2) ∈ ℤ)
8 id 22 . . . . . 6 (𝑗𝐼𝑗𝐼)
9 oveq1 6556 . . . . . . . 8 (𝑖 = 𝑗 → (𝑖 · 2) = (𝑗 · 2))
109eqeq2d 2620 . . . . . . 7 (𝑖 = 𝑗 → ((𝑗 · 2) = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑗 · 2)))
1110adantl 481 . . . . . 6 ((𝑗𝐼𝑖 = 𝑗) → ((𝑗 · 2) = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑗 · 2)))
12 eqidd 2611 . . . . . 6 (𝑗𝐼 → (𝑗 · 2) = (𝑗 · 2))
138, 11, 12rspcedvd 3289 . . . . 5 (𝑗𝐼 → ∃𝑖𝐼 (𝑗 · 2) = (𝑖 · 2))
14 eqeq1 2614 . . . . . . 7 (𝑥 = (𝑗 · 2) → (𝑥 = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑖 · 2)))
1514rexbidv 3034 . . . . . 6 (𝑥 = (𝑗 · 2) → (∃𝑖𝐼 𝑥 = (𝑖 · 2) ↔ ∃𝑖𝐼 (𝑗 · 2) = (𝑖 · 2)))
1615elrab 3331 . . . . 5 ((𝑗 · 2) ∈ {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ↔ ((𝑗 · 2) ∈ ℤ ∧ ∃𝑖𝐼 (𝑗 · 2) = (𝑖 · 2)))
177, 13, 16sylanbrc 695 . . . 4 (𝑗𝐼 → (𝑗 · 2) ∈ {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)})
181, 17fmpti 6291 . . 3 𝐹:𝐼⟶{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
191a1i 11 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝐹 = (𝑗𝐼 ↦ (𝑗 · 2)))
20 oveq1 6556 . . . . . . . 8 (𝑗 = 𝑦 → (𝑗 · 2) = (𝑦 · 2))
2120adantl 481 . . . . . . 7 (((𝑦𝐼𝑧𝐼) ∧ 𝑗 = 𝑦) → (𝑗 · 2) = (𝑦 · 2))
22 simpl 472 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝑦𝐼)
23 ovex 6577 . . . . . . . 8 (𝑦 · 2) ∈ V
2423a1i 11 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → (𝑦 · 2) ∈ V)
2519, 21, 22, 24fvmptd 6197 . . . . . 6 ((𝑦𝐼𝑧𝐼) → (𝐹𝑦) = (𝑦 · 2))
26 oveq1 6556 . . . . . . . 8 (𝑗 = 𝑧 → (𝑗 · 2) = (𝑧 · 2))
2726adantl 481 . . . . . . 7 (((𝑦𝐼𝑧𝐼) ∧ 𝑗 = 𝑧) → (𝑗 · 2) = (𝑧 · 2))
28 simpr 476 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝑧𝐼)
29 ovex 6577 . . . . . . . 8 (𝑧 · 2) ∈ V
3029a1i 11 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → (𝑧 · 2) ∈ V)
3119, 27, 28, 30fvmptd 6197 . . . . . 6 ((𝑦𝐼𝑧𝐼) → (𝐹𝑧) = (𝑧 · 2))
3225, 31eqeq12d 2625 . . . . 5 ((𝑦𝐼𝑧𝐼) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 · 2) = (𝑧 · 2)))
33 elfzelz 12213 . . . . . . . . . 10 (𝑦 ∈ (𝐴...𝐵) → 𝑦 ∈ ℤ)
3433, 3eleq2s 2706 . . . . . . . . 9 (𝑦𝐼𝑦 ∈ ℤ)
3534zcnd 11359 . . . . . . . 8 (𝑦𝐼𝑦 ∈ ℂ)
3635adantr 480 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝑦 ∈ ℂ)
37 elfzelz 12213 . . . . . . . . . 10 (𝑧 ∈ (𝐴...𝐵) → 𝑧 ∈ ℤ)
3837, 3eleq2s 2706 . . . . . . . . 9 (𝑧𝐼𝑧 ∈ ℤ)
3938zcnd 11359 . . . . . . . 8 (𝑧𝐼𝑧 ∈ ℂ)
4039adantl 481 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝑧 ∈ ℂ)
41 2cnd 10970 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 2 ∈ ℂ)
42 2ne0 10990 . . . . . . . 8 2 ≠ 0
4342a1i 11 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 2 ≠ 0)
4436, 40, 41, 43mulcan2d 10540 . . . . . 6 ((𝑦𝐼𝑧𝐼) → ((𝑦 · 2) = (𝑧 · 2) ↔ 𝑦 = 𝑧))
4544biimpd 218 . . . . 5 ((𝑦𝐼𝑧𝐼) → ((𝑦 · 2) = (𝑧 · 2) → 𝑦 = 𝑧))
4632, 45sylbid 229 . . . 4 ((𝑦𝐼𝑧𝐼) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
4746rgen2 2958 . . 3 𝑦𝐼𝑧𝐼 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)
48 dff13 6416 . . 3 (𝐹:𝐼1-1→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ↔ (𝐹:𝐼⟶{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ∧ ∀𝑦𝐼𝑧𝐼 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
4918, 47, 48mpbir2an 957 . 2 𝐹:𝐼1-1→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
50 oveq1 6556 . . . . . . 7 (𝑗 = 𝑖 → (𝑗 · 2) = (𝑖 · 2))
5150eqeq2d 2620 . . . . . 6 (𝑗 = 𝑖 → (𝑥 = (𝑗 · 2) ↔ 𝑥 = (𝑖 · 2)))
5251cbvrexv 3148 . . . . 5 (∃𝑗𝐼 𝑥 = (𝑗 · 2) ↔ ∃𝑖𝐼 𝑥 = (𝑖 · 2))
53 elfzelz 12213 . . . . . . . . . 10 (𝑖 ∈ (𝐴...𝐵) → 𝑖 ∈ ℤ)
545a1i 11 . . . . . . . . . 10 (𝑖 ∈ (𝐴...𝐵) → 2 ∈ ℤ)
5553, 54zmulcld 11364 . . . . . . . . 9 (𝑖 ∈ (𝐴...𝐵) → (𝑖 · 2) ∈ ℤ)
5655, 3eleq2s 2706 . . . . . . . 8 (𝑖𝐼 → (𝑖 · 2) ∈ ℤ)
57 eleq1 2676 . . . . . . . 8 (𝑥 = (𝑖 · 2) → (𝑥 ∈ ℤ ↔ (𝑖 · 2) ∈ ℤ))
5856, 57syl5ibrcom 236 . . . . . . 7 (𝑖𝐼 → (𝑥 = (𝑖 · 2) → 𝑥 ∈ ℤ))
5958rexlimiv 3009 . . . . . 6 (∃𝑖𝐼 𝑥 = (𝑖 · 2) → 𝑥 ∈ ℤ)
6059pm4.71ri 663 . . . . 5 (∃𝑖𝐼 𝑥 = (𝑖 · 2) ↔ (𝑥 ∈ ℤ ∧ ∃𝑖𝐼 𝑥 = (𝑖 · 2)))
6152, 60bitri 263 . . . 4 (∃𝑗𝐼 𝑥 = (𝑗 · 2) ↔ (𝑥 ∈ ℤ ∧ ∃𝑖𝐼 𝑥 = (𝑖 · 2)))
6261abbii 2726 . . 3 {𝑥 ∣ ∃𝑗𝐼 𝑥 = (𝑗 · 2)} = {𝑥 ∣ (𝑥 ∈ ℤ ∧ ∃𝑖𝐼 𝑥 = (𝑖 · 2))}
631rnmpt 5292 . . 3 ran 𝐹 = {𝑥 ∣ ∃𝑗𝐼 𝑥 = (𝑗 · 2)}
64 df-rab 2905 . . 3 {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} = {𝑥 ∣ (𝑥 ∈ ℤ ∧ ∃𝑖𝐼 𝑥 = (𝑖 · 2))}
6562, 63, 643eqtr4i 2642 . 2 ran 𝐹 = {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
66 dff1o5 6059 . 2 (𝐹:𝐼1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ↔ (𝐹:𝐼1-1→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ∧ ran 𝐹 = {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}))
6749, 65, 66mpbir2an 957 1 𝐹:𝐼1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cmpt 4643  ran crn 5039  wf 5800  1-1wf1 5801  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815   · cmul 9820  2c2 10947  cz 11254  ...cfz 12197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198
This theorem is referenced by:  2lgslem1  24919
  Copyright terms: Public domain W3C validator