MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskcard Structured version   Visualization version   GIF version

Theorem tskcard 9482
Description: An even more direct relationship than r1tskina 9483 to get an inaccessible cardinal out of a Tarski class: the size of any nonempty Tarski class is an inaccessible cardinal. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
tskcard ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (card‘𝑇) ∈ Inacc)

Proof of Theorem tskcard
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardeq0 9253 . . . 4 (𝑇 ∈ Tarski → ((card‘𝑇) = ∅ ↔ 𝑇 = ∅))
21necon3bid 2826 . . 3 (𝑇 ∈ Tarski → ((card‘𝑇) ≠ ∅ ↔ 𝑇 ≠ ∅))
32biimpar 501 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (card‘𝑇) ≠ ∅)
4 eqid 2610 . . . . . 6 (𝑧 ∈ (cf‘(ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)})) ↦ (har‘(𝑤𝑧))) = (𝑧 ∈ (cf‘(ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)})) ↦ (har‘(𝑤𝑧)))
54pwcfsdom 9284 . . . . 5 (ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}) ≺ ((ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}) ↑𝑚 (cf‘(ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)})))
6 vpwex 4775 . . . . . . . . . . . 12 𝒫 𝑥 ∈ V
76canth2 7998 . . . . . . . . . . 11 𝒫 𝑥 ≺ 𝒫 𝒫 𝑥
8 simpl 472 . . . . . . . . . . . . 13 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝑇 ∈ Tarski)
9 cardon 8653 . . . . . . . . . . . . . . . . 17 (card‘𝑇) ∈ On
109oneli 5752 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (card‘𝑇) → 𝑥 ∈ On)
1110adantl 481 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝑥 ∈ On)
12 cardsdomelir 8682 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (card‘𝑇) → 𝑥𝑇)
1312adantl 481 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝑥𝑇)
14 tskord 9481 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ On ∧ 𝑥𝑇) → 𝑥𝑇)
158, 11, 13, 14syl3anc 1318 . . . . . . . . . . . . . 14 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝑥𝑇)
16 tskpw 9454 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝒫 𝑥𝑇)
17 tskpwss 9453 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Tarski ∧ 𝒫 𝑥𝑇) → 𝒫 𝒫 𝑥𝑇)
1816, 17syldan 486 . . . . . . . . . . . . . 14 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝒫 𝒫 𝑥𝑇)
1915, 18syldan 486 . . . . . . . . . . . . 13 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝒫 𝒫 𝑥𝑇)
20 ssdomg 7887 . . . . . . . . . . . . 13 (𝑇 ∈ Tarski → (𝒫 𝒫 𝑥𝑇 → 𝒫 𝒫 𝑥𝑇))
218, 19, 20sylc 63 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝒫 𝒫 𝑥𝑇)
22 cardidg 9249 . . . . . . . . . . . . . 14 (𝑇 ∈ Tarski → (card‘𝑇) ≈ 𝑇)
2322ensymd 7893 . . . . . . . . . . . . 13 (𝑇 ∈ Tarski → 𝑇 ≈ (card‘𝑇))
2423adantr 480 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝑇 ≈ (card‘𝑇))
25 domentr 7901 . . . . . . . . . . . 12 ((𝒫 𝒫 𝑥𝑇𝑇 ≈ (card‘𝑇)) → 𝒫 𝒫 𝑥 ≼ (card‘𝑇))
2621, 24, 25syl2anc 691 . . . . . . . . . . 11 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝒫 𝒫 𝑥 ≼ (card‘𝑇))
27 sdomdomtr 7978 . . . . . . . . . . 11 ((𝒫 𝑥 ≺ 𝒫 𝒫 𝑥 ∧ 𝒫 𝒫 𝑥 ≼ (card‘𝑇)) → 𝒫 𝑥 ≺ (card‘𝑇))
287, 26, 27sylancr 694 . . . . . . . . . 10 ((𝑇 ∈ Tarski ∧ 𝑥 ∈ (card‘𝑇)) → 𝒫 𝑥 ≺ (card‘𝑇))
2928ralrimiva 2949 . . . . . . . . 9 (𝑇 ∈ Tarski → ∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇))
3029adantr 480 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇))
31 inawinalem 9390 . . . . . . . . . 10 ((card‘𝑇) ∈ On → (∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇) → ∀𝑥 ∈ (card‘𝑇)∃𝑦 ∈ (card‘𝑇)𝑥𝑦))
329, 31ax-mp 5 . . . . . . . . 9 (∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇) → ∀𝑥 ∈ (card‘𝑇)∃𝑦 ∈ (card‘𝑇)𝑥𝑦)
33 winainflem 9394 . . . . . . . . . 10 (((card‘𝑇) ≠ ∅ ∧ (card‘𝑇) ∈ On ∧ ∀𝑥 ∈ (card‘𝑇)∃𝑦 ∈ (card‘𝑇)𝑥𝑦) → ω ⊆ (card‘𝑇))
349, 33mp3an2 1404 . . . . . . . . 9 (((card‘𝑇) ≠ ∅ ∧ ∀𝑥 ∈ (card‘𝑇)∃𝑦 ∈ (card‘𝑇)𝑥𝑦) → ω ⊆ (card‘𝑇))
3532, 34sylan2 490 . . . . . . . 8 (((card‘𝑇) ≠ ∅ ∧ ∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇)) → ω ⊆ (card‘𝑇))
363, 30, 35syl2anc 691 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ω ⊆ (card‘𝑇))
37 cardidm 8668 . . . . . . 7 (card‘(card‘𝑇)) = (card‘𝑇)
38 cardaleph 8795 . . . . . . 7 ((ω ⊆ (card‘𝑇) ∧ (card‘(card‘𝑇)) = (card‘𝑇)) → (card‘𝑇) = (ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}))
3936, 37, 38sylancl 693 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (card‘𝑇) = (ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}))
4039fveq2d 6107 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (cf‘(card‘𝑇)) = (cf‘(ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)})))
4139, 40oveq12d 6567 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) = ((ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}) ↑𝑚 (cf‘(ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}))))
4239, 41breq12d 4596 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ((card‘𝑇) ≺ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ↔ (ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}) ≺ ((ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)}) ↑𝑚 (cf‘(ℵ‘ {𝑥 ∈ On ∣ (card‘𝑇) ⊆ (ℵ‘𝑥)})))))
435, 42mpbiri 247 . . . 4 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (card‘𝑇) ≺ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))))
44 simp1 1054 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇) ∧ 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))) → 𝑇 ∈ Tarski)
45 simp3 1056 . . . . . . . . . . . . 13 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇) ∧ 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))) → 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))))
46 fvex 6113 . . . . . . . . . . . . . . . 16 (card‘𝑇) ∈ V
47 fvex 6113 . . . . . . . . . . . . . . . 16 (cf‘(card‘𝑇)) ∈ V
4846, 47elmap 7772 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ↔ 𝑥:(cf‘(card‘𝑇))⟶(card‘𝑇))
49 fssxp 5973 . . . . . . . . . . . . . . 15 (𝑥:(cf‘(card‘𝑇))⟶(card‘𝑇) → 𝑥 ⊆ ((cf‘(card‘𝑇)) × (card‘𝑇)))
5048, 49sylbi 206 . . . . . . . . . . . . . 14 (𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) → 𝑥 ⊆ ((cf‘(card‘𝑇)) × (card‘𝑇)))
5115ex 449 . . . . . . . . . . . . . . . 16 (𝑇 ∈ Tarski → (𝑥 ∈ (card‘𝑇) → 𝑥𝑇))
5251ssrdv 3574 . . . . . . . . . . . . . . 15 (𝑇 ∈ Tarski → (card‘𝑇) ⊆ 𝑇)
53 cfle 8959 . . . . . . . . . . . . . . . . 17 (cf‘(card‘𝑇)) ⊆ (card‘𝑇)
54 sstr 3576 . . . . . . . . . . . . . . . . 17 (((cf‘(card‘𝑇)) ⊆ (card‘𝑇) ∧ (card‘𝑇) ⊆ 𝑇) → (cf‘(card‘𝑇)) ⊆ 𝑇)
5553, 54mpan 702 . . . . . . . . . . . . . . . 16 ((card‘𝑇) ⊆ 𝑇 → (cf‘(card‘𝑇)) ⊆ 𝑇)
56 tskxpss 9473 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ⊆ 𝑇 ∧ (card‘𝑇) ⊆ 𝑇) → ((cf‘(card‘𝑇)) × (card‘𝑇)) ⊆ 𝑇)
57563exp 1256 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ Tarski → ((cf‘(card‘𝑇)) ⊆ 𝑇 → ((card‘𝑇) ⊆ 𝑇 → ((cf‘(card‘𝑇)) × (card‘𝑇)) ⊆ 𝑇)))
5857com23 84 . . . . . . . . . . . . . . . 16 (𝑇 ∈ Tarski → ((card‘𝑇) ⊆ 𝑇 → ((cf‘(card‘𝑇)) ⊆ 𝑇 → ((cf‘(card‘𝑇)) × (card‘𝑇)) ⊆ 𝑇)))
5955, 58mpdi 44 . . . . . . . . . . . . . . 15 (𝑇 ∈ Tarski → ((card‘𝑇) ⊆ 𝑇 → ((cf‘(card‘𝑇)) × (card‘𝑇)) ⊆ 𝑇))
6052, 59mpd 15 . . . . . . . . . . . . . 14 (𝑇 ∈ Tarski → ((cf‘(card‘𝑇)) × (card‘𝑇)) ⊆ 𝑇)
61 sstr2 3575 . . . . . . . . . . . . . 14 (𝑥 ⊆ ((cf‘(card‘𝑇)) × (card‘𝑇)) → (((cf‘(card‘𝑇)) × (card‘𝑇)) ⊆ 𝑇𝑥𝑇))
6250, 60, 61syl2im 39 . . . . . . . . . . . . 13 (𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) → (𝑇 ∈ Tarski → 𝑥𝑇))
6345, 44, 62sylc 63 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇) ∧ 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))) → 𝑥𝑇)
64 simp2 1055 . . . . . . . . . . . . 13 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇) ∧ 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))) → (cf‘(card‘𝑇)) ∈ (card‘𝑇))
65 ffn 5958 . . . . . . . . . . . . . . . . 17 (𝑥:(cf‘(card‘𝑇))⟶(card‘𝑇) → 𝑥 Fn (cf‘(card‘𝑇)))
66 fndmeng 7919 . . . . . . . . . . . . . . . . 17 ((𝑥 Fn (cf‘(card‘𝑇)) ∧ (cf‘(card‘𝑇)) ∈ V) → (cf‘(card‘𝑇)) ≈ 𝑥)
6765, 47, 66sylancl 693 . . . . . . . . . . . . . . . 16 (𝑥:(cf‘(card‘𝑇))⟶(card‘𝑇) → (cf‘(card‘𝑇)) ≈ 𝑥)
6848, 67sylbi 206 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) → (cf‘(card‘𝑇)) ≈ 𝑥)
6968ensymd 7893 . . . . . . . . . . . . . 14 (𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) → 𝑥 ≈ (cf‘(card‘𝑇)))
70 cardsdomelir 8682 . . . . . . . . . . . . . 14 ((cf‘(card‘𝑇)) ∈ (card‘𝑇) → (cf‘(card‘𝑇)) ≺ 𝑇)
71 ensdomtr 7981 . . . . . . . . . . . . . 14 ((𝑥 ≈ (cf‘(card‘𝑇)) ∧ (cf‘(card‘𝑇)) ≺ 𝑇) → 𝑥𝑇)
7269, 70, 71syl2an 493 . . . . . . . . . . . . 13 ((𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → 𝑥𝑇)
7345, 64, 72syl2anc 691 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇) ∧ 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))) → 𝑥𝑇)
74 tskssel 9458 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝑥𝑇𝑥𝑇) → 𝑥𝑇)
7544, 63, 73, 74syl3anc 1318 . . . . . . . . . . 11 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇) ∧ 𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))) → 𝑥𝑇)
76753expia 1259 . . . . . . . . . 10 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → (𝑥 ∈ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) → 𝑥𝑇))
7776ssrdv 3574 . . . . . . . . 9 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ⊆ 𝑇)
78 ssdomg 7887 . . . . . . . . . 10 (𝑇 ∈ Tarski → (((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ⊆ 𝑇 → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ 𝑇))
7978imp 444 . . . . . . . . 9 ((𝑇 ∈ Tarski ∧ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ⊆ 𝑇) → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ 𝑇)
8077, 79syldan 486 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ 𝑇)
8123adantr 480 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → 𝑇 ≈ (card‘𝑇))
82 domentr 7901 . . . . . . . 8 ((((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ 𝑇𝑇 ≈ (card‘𝑇)) → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ (card‘𝑇))
8380, 81, 82syl2anc 691 . . . . . . 7 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ (card‘𝑇))
84 domnsym 7971 . . . . . . 7 (((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))) ≼ (card‘𝑇) → ¬ (card‘𝑇) ≺ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))))
8583, 84syl 17 . . . . . 6 ((𝑇 ∈ Tarski ∧ (cf‘(card‘𝑇)) ∈ (card‘𝑇)) → ¬ (card‘𝑇) ≺ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇))))
8685ex 449 . . . . 5 (𝑇 ∈ Tarski → ((cf‘(card‘𝑇)) ∈ (card‘𝑇) → ¬ (card‘𝑇) ≺ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))))
8786adantr 480 . . . 4 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ((cf‘(card‘𝑇)) ∈ (card‘𝑇) → ¬ (card‘𝑇) ≺ ((card‘𝑇) ↑𝑚 (cf‘(card‘𝑇)))))
8843, 87mt2d 130 . . 3 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ¬ (cf‘(card‘𝑇)) ∈ (card‘𝑇))
89 cfon 8960 . . . . . 6 (cf‘(card‘𝑇)) ∈ On
9089, 9onsseli 5759 . . . . 5 ((cf‘(card‘𝑇)) ⊆ (card‘𝑇) ↔ ((cf‘(card‘𝑇)) ∈ (card‘𝑇) ∨ (cf‘(card‘𝑇)) = (card‘𝑇)))
9153, 90mpbi 219 . . . 4 ((cf‘(card‘𝑇)) ∈ (card‘𝑇) ∨ (cf‘(card‘𝑇)) = (card‘𝑇))
9291ori 389 . . 3 (¬ (cf‘(card‘𝑇)) ∈ (card‘𝑇) → (cf‘(card‘𝑇)) = (card‘𝑇))
9388, 92syl 17 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (cf‘(card‘𝑇)) = (card‘𝑇))
94 elina 9388 . 2 ((card‘𝑇) ∈ Inacc ↔ ((card‘𝑇) ≠ ∅ ∧ (cf‘(card‘𝑇)) = (card‘𝑇) ∧ ∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇)))
953, 93, 30, 94syl3anbrc 1239 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (card‘𝑇) ∈ Inacc)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  c0 3874  𝒫 cpw 4108   cint 4410   class class class wbr 4583  cmpt 4643   × cxp 5036  Oncon0 5640   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  ωcom 6957  𝑚 cmap 7744  cen 7838  cdom 7839  csdm 7840  harchar 8344  cardccrd 8644  cale 8645  cfccf 8646  Inacccina 9384  Tarskictsk 9449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-ac2 9168
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-smo 7330  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-har 8346  df-r1 8510  df-card 8648  df-aleph 8649  df-cf 8650  df-acn 8651  df-ac 8822  df-ina 9386  df-tsk 9450
This theorem is referenced by:  r1tskina  9483  tskuni  9484  inaprc  9537
  Copyright terms: Public domain W3C validator