MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winainflem Structured version   Visualization version   GIF version

Theorem winainflem 9394
Description: A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winainflem ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ω ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem winainflem
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0suc 6982 . . . 4 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑧 ∈ ω 𝐴 = suc 𝑧))
2 simp1 1054 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → 𝐴 ≠ ∅)
32necon2bi 2812 . . . . 5 (𝐴 = ∅ → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
4 vex 3176 . . . . . . . . . . . 12 𝑧 ∈ V
54sucid 5721 . . . . . . . . . . 11 𝑧 ∈ suc 𝑧
6 eleq2 2677 . . . . . . . . . . 11 (𝐴 = suc 𝑧 → (𝑧𝐴𝑧 ∈ suc 𝑧))
75, 6mpbiri 247 . . . . . . . . . 10 (𝐴 = suc 𝑧𝑧𝐴)
87adantl 481 . . . . . . . . 9 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → 𝑧𝐴)
9 breq1 4586 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
109rexbidv 3034 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦𝐴 𝑧𝑦))
11 breq2 4587 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (𝑧𝑦𝑧𝑤))
1211cbvrexv 3148 . . . . . . . . . . 11 (∃𝑦𝐴 𝑧𝑦 ↔ ∃𝑤𝐴 𝑧𝑤)
1310, 12syl6bb 275 . . . . . . . . . 10 (𝑥 = 𝑧 → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑤𝐴 𝑧𝑤))
1413rspcv 3278 . . . . . . . . 9 (𝑧𝐴 → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 → ∃𝑤𝐴 𝑧𝑤))
158, 14syl 17 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 → ∃𝑤𝐴 𝑧𝑤))
16 eleq2 2677 . . . . . . . . . . . . . . 15 (𝐴 = suc 𝑧 → (𝑤𝐴𝑤 ∈ suc 𝑧))
1716biimpa 500 . . . . . . . . . . . . . 14 ((𝐴 = suc 𝑧𝑤𝐴) → 𝑤 ∈ suc 𝑧)
18173ad2antl2 1217 . . . . . . . . . . . . 13 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑤 ∈ suc 𝑧)
19 nnon 6963 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ω → 𝑧 ∈ On)
20 suceloni 6905 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ On → suc 𝑧 ∈ On)
2119, 20syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ω → suc 𝑧 ∈ On)
22 eleq1 2676 . . . . . . . . . . . . . . . . . 18 (𝐴 = suc 𝑧 → (𝐴 ∈ On ↔ suc 𝑧 ∈ On))
2322biimparc 503 . . . . . . . . . . . . . . . . 17 ((suc 𝑧 ∈ On ∧ 𝐴 = suc 𝑧) → 𝐴 ∈ On)
2421, 23sylan 487 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → 𝐴 ∈ On)
25243adant3 1074 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → 𝐴 ∈ On)
26 onelon 5665 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑤𝐴) → 𝑤 ∈ On)
2725, 26sylan 487 . . . . . . . . . . . . . 14 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑤 ∈ On)
28 simpl1 1057 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑧 ∈ ω)
2928, 19syl 17 . . . . . . . . . . . . . 14 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑧 ∈ On)
30 onsssuc 5730 . . . . . . . . . . . . . 14 ((𝑤 ∈ On ∧ 𝑧 ∈ On) → (𝑤𝑧𝑤 ∈ suc 𝑧))
3127, 29, 30syl2anc 691 . . . . . . . . . . . . 13 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → (𝑤𝑧𝑤 ∈ suc 𝑧))
3218, 31mpbird 246 . . . . . . . . . . . 12 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑤𝑧)
33 ssdomg 7887 . . . . . . . . . . . 12 (𝑧 ∈ V → (𝑤𝑧𝑤𝑧))
344, 32, 33mpsyl 66 . . . . . . . . . . 11 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → 𝑤𝑧)
35 domnsym 7971 . . . . . . . . . . 11 (𝑤𝑧 → ¬ 𝑧𝑤)
3634, 35syl 17 . . . . . . . . . 10 (((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) ∧ 𝑤𝐴) → ¬ 𝑧𝑤)
3736nrexdv 2984 . . . . . . . . 9 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ¬ ∃𝑤𝐴 𝑧𝑤)
38373expia 1259 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → (∀𝑥𝐴𝑦𝐴 𝑥𝑦 → ¬ ∃𝑤𝐴 𝑧𝑤))
3915, 38pm2.65d 186 . . . . . . 7 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → ¬ ∀𝑥𝐴𝑦𝐴 𝑥𝑦)
4039intn3an3d 1436 . . . . . 6 ((𝑧 ∈ ω ∧ 𝐴 = suc 𝑧) → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
4140rexlimiva 3010 . . . . 5 (∃𝑧 ∈ ω 𝐴 = suc 𝑧 → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
423, 41jaoi 393 . . . 4 ((𝐴 = ∅ ∨ ∃𝑧 ∈ ω 𝐴 = suc 𝑧) → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
431, 42syl 17 . . 3 (𝐴 ∈ ω → ¬ (𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦))
4443con2i 133 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ¬ 𝐴 ∈ ω)
45 ordom 6966 . . 3 Ord ω
46 eloni 5650 . . . 4 (𝐴 ∈ On → Ord 𝐴)
47463ad2ant2 1076 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → Ord 𝐴)
48 ordtri1 5673 . . 3 ((Ord ω ∧ Ord 𝐴) → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
4945, 47, 48sylancr 694 . 2 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
5044, 49mpbird 246 1 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥𝐴𝑦𝐴 𝑥𝑦) → ω ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  wss 3540  c0 3874   class class class wbr 4583  Ord word 5639  Oncon0 5640  suc csuc 5642  ωcom 6957  cdom 7839  csdm 7840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-om 6958  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844
This theorem is referenced by:  winainf  9395  tskcard  9482  gruina  9519
  Copyright terms: Public domain W3C validator