MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winainflem Structured version   Unicode version

Theorem winainflem 9083
Description: A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winainflem  |-  ( ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  om  C_  A
)
Distinct variable group:    x, A, y

Proof of Theorem winainflem
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0suc 6719 . . . 4  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. z  e.  om  A  =  suc  z ) )
2 simp1 996 . . . . . 6  |-  ( ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  A  =/=  (/) )
32necon2bi 2704 . . . . 5  |-  ( A  =  (/)  ->  -.  ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y ) )
4 vex 3121 . . . . . . . . . . . 12  |-  z  e. 
_V
54sucid 4963 . . . . . . . . . . 11  |-  z  e. 
suc  z
6 eleq2 2540 . . . . . . . . . . 11  |-  ( A  =  suc  z  -> 
( z  e.  A  <->  z  e.  suc  z ) )
75, 6mpbiri 233 . . . . . . . . . 10  |-  ( A  =  suc  z  -> 
z  e.  A )
87adantl 466 . . . . . . . . 9  |-  ( ( z  e.  om  /\  A  =  suc  z )  ->  z  e.  A
)
9 breq1 4456 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
x  ~<  y  <->  z  ~<  y ) )
109rexbidv 2978 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( E. y  e.  A  x  ~<  y  <->  E. y  e.  A  z  ~<  y ) )
11 breq2 4457 . . . . . . . . . . . 12  |-  ( y  =  w  ->  (
z  ~<  y  <->  z  ~<  w ) )
1211cbvrexv 3094 . . . . . . . . . . 11  |-  ( E. y  e.  A  z 
~<  y  <->  E. w  e.  A  z  ~<  w )
1310, 12syl6bb 261 . . . . . . . . . 10  |-  ( x  =  z  ->  ( E. y  e.  A  x  ~<  y  <->  E. w  e.  A  z  ~<  w ) )
1413rspcv 3215 . . . . . . . . 9  |-  ( z  e.  A  ->  ( A. x  e.  A  E. y  e.  A  x  ~<  y  ->  E. w  e.  A  z  ~<  w ) )
158, 14syl 16 . . . . . . . 8  |-  ( ( z  e.  om  /\  A  =  suc  z )  ->  ( A. x  e.  A  E. y  e.  A  x  ~<  y  ->  E. w  e.  A  z  ~<  w ) )
16 eleq2 2540 . . . . . . . . . . . . . . 15  |-  ( A  =  suc  z  -> 
( w  e.  A  <->  w  e.  suc  z ) )
1716biimpa 484 . . . . . . . . . . . . . 14  |-  ( ( A  =  suc  z  /\  w  e.  A
)  ->  w  e.  suc  z )
18173ad2antl2 1159 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  om  /\  A  =  suc  z  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  /\  w  e.  A )  ->  w  e.  suc  z
)
19 nnon 6701 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  om  ->  z  e.  On )
20 suceloni 6643 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  On  ->  suc  z  e.  On )
2119, 20syl 16 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  om  ->  suc  z  e.  On )
22 eleq1 2539 . . . . . . . . . . . . . . . . . 18  |-  ( A  =  suc  z  -> 
( A  e.  On  <->  suc  z  e.  On ) )
2322biimparc 487 . . . . . . . . . . . . . . . . 17  |-  ( ( suc  z  e.  On  /\  A  =  suc  z
)  ->  A  e.  On )
2421, 23sylan 471 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  om  /\  A  =  suc  z )  ->  A  e.  On )
25243adant3 1016 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  om  /\  A  =  suc  z  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  A  e.  On )
26 onelon 4909 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  On  /\  w  e.  A )  ->  w  e.  On )
2725, 26sylan 471 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  om  /\  A  =  suc  z  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  /\  w  e.  A )  ->  w  e.  On )
28 simpl1 999 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  om  /\  A  =  suc  z  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  /\  w  e.  A )  ->  z  e.  om )
2928, 19syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  om  /\  A  =  suc  z  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  /\  w  e.  A )  ->  z  e.  On )
30 onsssuc 4971 . . . . . . . . . . . . . 14  |-  ( ( w  e.  On  /\  z  e.  On )  ->  ( w  C_  z  <->  w  e.  suc  z ) )
3127, 29, 30syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  om  /\  A  =  suc  z  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  /\  w  e.  A )  ->  ( w  C_  z  <->  w  e.  suc  z ) )
3218, 31mpbird 232 . . . . . . . . . . . 12  |-  ( ( ( z  e.  om  /\  A  =  suc  z  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  /\  w  e.  A )  ->  w  C_  z )
33 ssdomg 7573 . . . . . . . . . . . 12  |-  ( z  e.  _V  ->  (
w  C_  z  ->  w  ~<_  z ) )
344, 32, 33mpsyl 63 . . . . . . . . . . 11  |-  ( ( ( z  e.  om  /\  A  =  suc  z  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  /\  w  e.  A )  ->  w  ~<_  z )
35 domnsym 7655 . . . . . . . . . . 11  |-  ( w  ~<_  z  ->  -.  z  ~<  w )
3634, 35syl 16 . . . . . . . . . 10  |-  ( ( ( z  e.  om  /\  A  =  suc  z  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  /\  w  e.  A )  ->  -.  z  ~<  w
)
3736nrexdv 2923 . . . . . . . . 9  |-  ( ( z  e.  om  /\  A  =  suc  z  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  -.  E. w  e.  A  z 
~<  w )
38373expia 1198 . . . . . . . 8  |-  ( ( z  e.  om  /\  A  =  suc  z )  ->  ( A. x  e.  A  E. y  e.  A  x  ~<  y  ->  -.  E. w  e.  A  z  ~<  w ) )
3915, 38pm2.65d 175 . . . . . . 7  |-  ( ( z  e.  om  /\  A  =  suc  z )  ->  -.  A. x  e.  A  E. y  e.  A  x  ~<  y )
40 simp3 998 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  A. x  e.  A  E. y  e.  A  x  ~<  y )
4139, 40nsyl 121 . . . . . 6  |-  ( ( z  e.  om  /\  A  =  suc  z )  ->  -.  ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y ) )
4241rexlimiva 2955 . . . . 5  |-  ( E. z  e.  om  A  =  suc  z  ->  -.  ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y ) )
433, 42jaoi 379 . . . 4  |-  ( ( A  =  (/)  \/  E. z  e.  om  A  =  suc  z )  ->  -.  ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y ) )
441, 43syl 16 . . 3  |-  ( A  e.  om  ->  -.  ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y ) )
4544con2i 120 . 2  |-  ( ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  -.  A  e.  om )
46 ordom 6704 . . 3  |-  Ord  om
47 eloni 4894 . . . 4  |-  ( A  e.  On  ->  Ord  A )
48473ad2ant2 1018 . . 3  |-  ( ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  Ord  A )
49 ordtri1 4917 . . 3  |-  ( ( Ord  om  /\  Ord  A )  ->  ( om  C_  A  <->  -.  A  e.  om ) )
5046, 48, 49sylancr 663 . 2  |-  ( ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  ( om  C_  A  <->  -.  A  e.  om ) )
5145, 50mpbird 232 1  |-  ( ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  om  C_  A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2817   E.wrex 2818   _Vcvv 3118    C_ wss 3481   (/)c0 3790   class class class wbr 4453   Ord word 4883   Oncon0 4884   suc csuc 4886   omcom 6695    ~<_ cdom 7526    ~< csdm 7527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-om 6696  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531
This theorem is referenced by:  winainf  9084  tskcard  9171  gruina  9208
  Copyright terms: Public domain W3C validator