MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winainflem Structured version   Unicode version

Theorem winainflem 8856
Description: A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winainflem  |-  ( ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  om  C_  A
)
Distinct variable group:    x, A, y

Proof of Theorem winainflem
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0suc 6499 . . . 4  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. z  e.  om  A  =  suc  z ) )
2 simp1 983 . . . . . 6  |-  ( ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  A  =/=  (/) )
32necon2bi 2655 . . . . 5  |-  ( A  =  (/)  ->  -.  ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y ) )
4 vex 2973 . . . . . . . . . . . 12  |-  z  e. 
_V
54sucid 4794 . . . . . . . . . . 11  |-  z  e. 
suc  z
6 eleq2 2502 . . . . . . . . . . 11  |-  ( A  =  suc  z  -> 
( z  e.  A  <->  z  e.  suc  z ) )
75, 6mpbiri 233 . . . . . . . . . 10  |-  ( A  =  suc  z  -> 
z  e.  A )
87adantl 463 . . . . . . . . 9  |-  ( ( z  e.  om  /\  A  =  suc  z )  ->  z  e.  A
)
9 breq1 4292 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
x  ~<  y  <->  z  ~<  y ) )
109rexbidv 2734 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( E. y  e.  A  x  ~<  y  <->  E. y  e.  A  z  ~<  y ) )
11 breq2 4293 . . . . . . . . . . . 12  |-  ( y  =  w  ->  (
z  ~<  y  <->  z  ~<  w ) )
1211cbvrexv 2946 . . . . . . . . . . 11  |-  ( E. y  e.  A  z 
~<  y  <->  E. w  e.  A  z  ~<  w )
1310, 12syl6bb 261 . . . . . . . . . 10  |-  ( x  =  z  ->  ( E. y  e.  A  x  ~<  y  <->  E. w  e.  A  z  ~<  w ) )
1413rspcv 3066 . . . . . . . . 9  |-  ( z  e.  A  ->  ( A. x  e.  A  E. y  e.  A  x  ~<  y  ->  E. w  e.  A  z  ~<  w ) )
158, 14syl 16 . . . . . . . 8  |-  ( ( z  e.  om  /\  A  =  suc  z )  ->  ( A. x  e.  A  E. y  e.  A  x  ~<  y  ->  E. w  e.  A  z  ~<  w ) )
16 eleq2 2502 . . . . . . . . . . . . . . 15  |-  ( A  =  suc  z  -> 
( w  e.  A  <->  w  e.  suc  z ) )
1716biimpa 481 . . . . . . . . . . . . . 14  |-  ( ( A  =  suc  z  /\  w  e.  A
)  ->  w  e.  suc  z )
18173ad2antl2 1146 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  om  /\  A  =  suc  z  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  /\  w  e.  A )  ->  w  e.  suc  z
)
19 nnon 6481 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  om  ->  z  e.  On )
20 suceloni 6423 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  On  ->  suc  z  e.  On )
2119, 20syl 16 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  om  ->  suc  z  e.  On )
22 eleq1 2501 . . . . . . . . . . . . . . . . . 18  |-  ( A  =  suc  z  -> 
( A  e.  On  <->  suc  z  e.  On ) )
2322biimparc 484 . . . . . . . . . . . . . . . . 17  |-  ( ( suc  z  e.  On  /\  A  =  suc  z
)  ->  A  e.  On )
2421, 23sylan 468 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  om  /\  A  =  suc  z )  ->  A  e.  On )
25243adant3 1003 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  om  /\  A  =  suc  z  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  A  e.  On )
26 onelon 4740 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  On  /\  w  e.  A )  ->  w  e.  On )
2725, 26sylan 468 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  om  /\  A  =  suc  z  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  /\  w  e.  A )  ->  w  e.  On )
28 simpl1 986 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  om  /\  A  =  suc  z  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  /\  w  e.  A )  ->  z  e.  om )
2928, 19syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  om  /\  A  =  suc  z  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  /\  w  e.  A )  ->  z  e.  On )
30 onsssuc 4802 . . . . . . . . . . . . . 14  |-  ( ( w  e.  On  /\  z  e.  On )  ->  ( w  C_  z  <->  w  e.  suc  z ) )
3127, 29, 30syl2anc 656 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  om  /\  A  =  suc  z  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  /\  w  e.  A )  ->  ( w  C_  z  <->  w  e.  suc  z ) )
3218, 31mpbird 232 . . . . . . . . . . . 12  |-  ( ( ( z  e.  om  /\  A  =  suc  z  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  /\  w  e.  A )  ->  w  C_  z )
33 ssdomg 7351 . . . . . . . . . . . 12  |-  ( z  e.  _V  ->  (
w  C_  z  ->  w  ~<_  z ) )
344, 32, 33mpsyl 63 . . . . . . . . . . 11  |-  ( ( ( z  e.  om  /\  A  =  suc  z  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  /\  w  e.  A )  ->  w  ~<_  z )
35 domnsym 7433 . . . . . . . . . . 11  |-  ( w  ~<_  z  ->  -.  z  ~<  w )
3634, 35syl 16 . . . . . . . . . 10  |-  ( ( ( z  e.  om  /\  A  =  suc  z  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  /\  w  e.  A )  ->  -.  z  ~<  w
)
3736nrexdv 2817 . . . . . . . . 9  |-  ( ( z  e.  om  /\  A  =  suc  z  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  -.  E. w  e.  A  z 
~<  w )
38373expia 1184 . . . . . . . 8  |-  ( ( z  e.  om  /\  A  =  suc  z )  ->  ( A. x  e.  A  E. y  e.  A  x  ~<  y  ->  -.  E. w  e.  A  z  ~<  w ) )
3915, 38pm2.65d 175 . . . . . . 7  |-  ( ( z  e.  om  /\  A  =  suc  z )  ->  -.  A. x  e.  A  E. y  e.  A  x  ~<  y )
40 simp3 985 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  A. x  e.  A  E. y  e.  A  x  ~<  y )
4139, 40nsyl 121 . . . . . 6  |-  ( ( z  e.  om  /\  A  =  suc  z )  ->  -.  ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y ) )
4241rexlimiva 2834 . . . . 5  |-  ( E. z  e.  om  A  =  suc  z  ->  -.  ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y ) )
433, 42jaoi 379 . . . 4  |-  ( ( A  =  (/)  \/  E. z  e.  om  A  =  suc  z )  ->  -.  ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y ) )
441, 43syl 16 . . 3  |-  ( A  e.  om  ->  -.  ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y ) )
4544con2i 120 . 2  |-  ( ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  -.  A  e.  om )
46 ordom 6484 . . 3  |-  Ord  om
47 eloni 4725 . . . 4  |-  ( A  e.  On  ->  Ord  A )
48473ad2ant2 1005 . . 3  |-  ( ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  Ord  A )
49 ordtri1 4748 . . 3  |-  ( ( Ord  om  /\  Ord  A )  ->  ( om  C_  A  <->  -.  A  e.  om ) )
5046, 48, 49sylancr 658 . 2  |-  ( ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  ( om  C_  A  <->  -.  A  e.  om ) )
5145, 50mpbird 232 1  |-  ( ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  om  C_  A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714   _Vcvv 2970    C_ wss 3325   (/)c0 3634   class class class wbr 4289   Ord word 4714   Oncon0 4715   suc csuc 4717   omcom 6475    ~<_ cdom 7304    ~< csdm 7305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-om 6476  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309
This theorem is referenced by:  winainf  8857  tskcard  8944  gruina  8981
  Copyright terms: Public domain W3C validator