MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardaleph Structured version   Visualization version   GIF version

Theorem cardaleph 8795
Description: Given any transfinite cardinal number 𝐴, there is exactly one aleph that is equal to it. Here we compute that aleph explicitly. (Contributed by NM, 9-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
cardaleph ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cardaleph
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cardon 8653 . . . . . . . . 9 (card‘𝐴) ∈ On
2 eleq1 2676 . . . . . . . . 9 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ∈ On ↔ 𝐴 ∈ On))
31, 2mpbii 222 . . . . . . . 8 ((card‘𝐴) = 𝐴𝐴 ∈ On)
4 alephle 8794 . . . . . . . . 9 (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴))
5 fveq2 6103 . . . . . . . . . . 11 (𝑥 = 𝐴 → (ℵ‘𝑥) = (ℵ‘𝐴))
65sseq2d 3596 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐴 ⊆ (ℵ‘𝑥) ↔ 𝐴 ⊆ (ℵ‘𝐴)))
76rspcev 3282 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐴 ⊆ (ℵ‘𝐴)) → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥))
84, 7mpdan 699 . . . . . . . 8 (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥))
9 nfcv 2751 . . . . . . . . . 10 𝑥𝐴
10 nfcv 2751 . . . . . . . . . . 11 𝑥
11 nfrab1 3099 . . . . . . . . . . . 12 𝑥{𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}
1211nfint 4421 . . . . . . . . . . 11 𝑥 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}
1310, 12nffv 6110 . . . . . . . . . 10 𝑥(ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
149, 13nfss 3561 . . . . . . . . 9 𝑥 𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
15 fveq2 6103 . . . . . . . . . 10 (𝑥 = {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → (ℵ‘𝑥) = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
1615sseq2d 3596 . . . . . . . . 9 (𝑥 = {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → (𝐴 ⊆ (ℵ‘𝑥) ↔ 𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
1714, 16onminsb 6891 . . . . . . . 8 (∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥) → 𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
183, 8, 173syl 18 . . . . . . 7 ((card‘𝐴) = 𝐴𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
1918a1i 11 . . . . . 6 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → ((card‘𝐴) = 𝐴𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
20 fveq2 6103 . . . . . . . . 9 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = (ℵ‘∅))
21 aleph0 8772 . . . . . . . . 9 (ℵ‘∅) = ω
2220, 21syl6eq 2660 . . . . . . . 8 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = ω)
2322sseq1d 3595 . . . . . . 7 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → ((ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ 𝐴 ↔ ω ⊆ 𝐴))
2423biimprd 237 . . . . . 6 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → (ω ⊆ 𝐴 → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ 𝐴))
2519, 24anim12d 584 . . . . 5 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → (((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴) → (𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ 𝐴)))
26 eqss 3583 . . . . 5 (𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ (𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∧ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ⊆ 𝐴))
2725, 26syl6ibr 241 . . . 4 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → (((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
2827com12 32 . . 3 (((card‘𝐴) = 𝐴 ∧ ω ⊆ 𝐴) → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
2928ancoms 468 . 2 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
30 vex 3176 . . . . . . . . . . . 12 𝑦 ∈ V
3130sucid 5721 . . . . . . . . . . 11 𝑦 ∈ suc 𝑦
32 eleq2 2677 . . . . . . . . . . 11 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 → (𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ 𝑦 ∈ suc 𝑦))
3331, 32mpbiri 247 . . . . . . . . . 10 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
34 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦))
3534sseq2d 3596 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐴 ⊆ (ℵ‘𝑥) ↔ 𝐴 ⊆ (ℵ‘𝑦)))
3635onnminsb 6896 . . . . . . . . . 10 (𝑦 ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → ¬ 𝐴 ⊆ (ℵ‘𝑦)))
3733, 36syl5 33 . . . . . . . . 9 (𝑦 ∈ On → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 → ¬ 𝐴 ⊆ (ℵ‘𝑦)))
3837imp 444 . . . . . . . 8 ((𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦) → ¬ 𝐴 ⊆ (ℵ‘𝑦))
3938adantl 481 . . . . . . 7 (((card‘𝐴) = 𝐴 ∧ (𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦)) → ¬ 𝐴 ⊆ (ℵ‘𝑦))
40 fveq2 6103 . . . . . . . . . . 11 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = (ℵ‘suc 𝑦))
41 alephsuc 8774 . . . . . . . . . . 11 (𝑦 ∈ On → (ℵ‘suc 𝑦) = (har‘(ℵ‘𝑦)))
4240, 41sylan9eqr 2666 . . . . . . . . . 10 ((𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦) → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = (har‘(ℵ‘𝑦)))
4342eleq2d 2673 . . . . . . . . 9 ((𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦) → (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ 𝐴 ∈ (har‘(ℵ‘𝑦))))
4443biimpd 218 . . . . . . . 8 ((𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦) → (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝐴 ∈ (har‘(ℵ‘𝑦))))
45 elharval 8351 . . . . . . . . . 10 (𝐴 ∈ (har‘(ℵ‘𝑦)) ↔ (𝐴 ∈ On ∧ 𝐴 ≼ (ℵ‘𝑦)))
4645simprbi 479 . . . . . . . . 9 (𝐴 ∈ (har‘(ℵ‘𝑦)) → 𝐴 ≼ (ℵ‘𝑦))
47 onenon 8658 . . . . . . . . . . . 12 (𝐴 ∈ On → 𝐴 ∈ dom card)
483, 47syl 17 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴𝐴 ∈ dom card)
49 alephon 8775 . . . . . . . . . . . 12 (ℵ‘𝑦) ∈ On
50 onenon 8658 . . . . . . . . . . . 12 ((ℵ‘𝑦) ∈ On → (ℵ‘𝑦) ∈ dom card)
5149, 50ax-mp 5 . . . . . . . . . . 11 (ℵ‘𝑦) ∈ dom card
52 carddom2 8686 . . . . . . . . . . 11 ((𝐴 ∈ dom card ∧ (ℵ‘𝑦) ∈ dom card) → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ≼ (ℵ‘𝑦)))
5348, 51, 52sylancl 693 . . . . . . . . . 10 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ≼ (ℵ‘𝑦)))
54 sseq1 3589 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ⊆ (card‘(ℵ‘𝑦))))
55 alephcard 8776 . . . . . . . . . . . 12 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)
5655sseq2i 3593 . . . . . . . . . . 11 (𝐴 ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ⊆ (ℵ‘𝑦))
5754, 56syl6bb 275 . . . . . . . . . 10 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ⊆ (ℵ‘𝑦)))
5853, 57bitr3d 269 . . . . . . . . 9 ((card‘𝐴) = 𝐴 → (𝐴 ≼ (ℵ‘𝑦) ↔ 𝐴 ⊆ (ℵ‘𝑦)))
5946, 58syl5ib 233 . . . . . . . 8 ((card‘𝐴) = 𝐴 → (𝐴 ∈ (har‘(ℵ‘𝑦)) → 𝐴 ⊆ (ℵ‘𝑦)))
6044, 59sylan9r 688 . . . . . . 7 (((card‘𝐴) = 𝐴 ∧ (𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦)) → (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝐴 ⊆ (ℵ‘𝑦)))
6139, 60mtod 188 . . . . . 6 (((card‘𝐴) = 𝐴 ∧ (𝑦 ∈ On ∧ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦)) → ¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
6261rexlimdvaa 3014 . . . . 5 ((card‘𝐴) = 𝐴 → (∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 → ¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
63 onintrab2 6894 . . . . . . . . . . . . . 14 (∃𝑥 ∈ On 𝐴 ⊆ (ℵ‘𝑥) ↔ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
648, 63sylib 207 . . . . . . . . . . . . 13 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On)
65 onelon 5665 . . . . . . . . . . . . 13 (( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝑦 ∈ On)
6664, 65sylan 487 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝑦 ∈ On)
6736adantld 482 . . . . . . . . . . . 12 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → ¬ 𝐴 ⊆ (ℵ‘𝑦)))
6866, 67mpcom 37 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → ¬ 𝐴 ⊆ (ℵ‘𝑦))
6949onelssi 5753 . . . . . . . . . . 11 (𝐴 ∈ (ℵ‘𝑦) → 𝐴 ⊆ (ℵ‘𝑦))
7068, 69nsyl 134 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → ¬ 𝐴 ∈ (ℵ‘𝑦))
7170nrexdv 2984 . . . . . . . . 9 (𝐴 ∈ On → ¬ ∃𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}𝐴 ∈ (ℵ‘𝑦))
7271adantr 480 . . . . . . . 8 ((𝐴 ∈ On ∧ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → ¬ ∃𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}𝐴 ∈ (ℵ‘𝑦))
73 alephlim 8773 . . . . . . . . . . 11 (( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On ∧ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} (ℵ‘𝑦))
7464, 73sylan 487 . . . . . . . . . 10 ((𝐴 ∈ On ∧ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) = 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} (ℵ‘𝑦))
7574eleq2d 2673 . . . . . . . . 9 ((𝐴 ∈ On ∧ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ 𝐴 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} (ℵ‘𝑦)))
76 eliun 4460 . . . . . . . . 9 (𝐴 𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} (ℵ‘𝑦) ↔ ∃𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}𝐴 ∈ (ℵ‘𝑦))
7775, 76syl6bb 275 . . . . . . . 8 ((𝐴 ∈ On ∧ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ ∃𝑦 {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}𝐴 ∈ (ℵ‘𝑦)))
7872, 77mtbird 314 . . . . . . 7 ((𝐴 ∈ On ∧ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → ¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
7978ex 449 . . . . . 6 (𝐴 ∈ On → (Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → ¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
803, 79syl 17 . . . . 5 ((card‘𝐴) = 𝐴 → (Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} → ¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
8162, 80jaod 394 . . . 4 ((card‘𝐴) = 𝐴 → ((∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → ¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
828, 17syl 17 . . . . . 6 (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
83 alephon 8775 . . . . . . 7 (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∈ On
84 onsseleq 5682 . . . . . . 7 ((𝐴 ∈ On ∧ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∈ On) → (𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∨ 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
8583, 84mpan2 703 . . . . . 6 (𝐴 ∈ On → (𝐴 ⊆ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∨ 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))))
8682, 85mpbid 221 . . . . 5 (𝐴 ∈ On → (𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ∨ 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
8786ord 391 . . . 4 (𝐴 ∈ On → (¬ 𝐴 ∈ (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
883, 81, 87sylsyld 59 . . 3 ((card‘𝐴) = 𝐴 → ((∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
8988adantl 481 . 2 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ((∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
90 eloni 5650 . . . . 5 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})
91 ordzsl 6937 . . . . . 6 (Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ ∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
92 3orass 1034 . . . . . 6 (( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ ∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}) ↔ ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ (∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
9391, 92bitri 263 . . . . 5 (Ord {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ↔ ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ (∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
9490, 93sylib 207 . . . 4 ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} ∈ On → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ (∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
953, 64, 943syl 18 . . 3 ((card‘𝐴) = 𝐴 → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ (∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
9695adantl 481 . 2 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → ( {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = ∅ ∨ (∃𝑦 ∈ On {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)} = suc 𝑦 ∨ Lim {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})))
9729, 89, 96mpjaod 395 1 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3o 1030   = wceq 1475  wcel 1977  wrex 2897  {crab 2900  wss 3540  c0 3874   cint 4410   ciun 4455   class class class wbr 4583  dom cdm 5038  Ord word 5639  Oncon0 5640  Lim wlim 5641  suc csuc 5642  cfv 5804  ωcom 6957  cdom 7839  harchar 8344  cardccrd 8644  cale 8645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-har 8346  df-card 8648  df-aleph 8649
This theorem is referenced by:  cardalephex  8796  tskcard  9482
  Copyright terms: Public domain W3C validator