MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardaleph Structured version   Visualization version   Unicode version

Theorem cardaleph 8517
Description: Given any transfinite cardinal number  A, there is exactly one aleph that is equal to it. Here we compute that aleph explicitly. (Contributed by NM, 9-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
cardaleph  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  ->  A  =  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } ) )
Distinct variable group:    x, A

Proof of Theorem cardaleph
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cardon 8375 . . . . . . . . 9  |-  ( card `  A )  e.  On
2 eleq1 2516 . . . . . . . . 9  |-  ( (
card `  A )  =  A  ->  ( (
card `  A )  e.  On  <->  A  e.  On ) )
31, 2mpbii 215 . . . . . . . 8  |-  ( (
card `  A )  =  A  ->  A  e.  On )
4 alephle 8516 . . . . . . . . 9  |-  ( A  e.  On  ->  A  C_  ( aleph `  A )
)
5 fveq2 5863 . . . . . . . . . . 11  |-  ( x  =  A  ->  ( aleph `  x )  =  ( aleph `  A )
)
65sseq2d 3459 . . . . . . . . . 10  |-  ( x  =  A  ->  ( A  C_  ( aleph `  x
)  <->  A  C_  ( aleph `  A ) ) )
76rspcev 3149 . . . . . . . . 9  |-  ( ( A  e.  On  /\  A  C_  ( aleph `  A
) )  ->  E. x  e.  On  A  C_  ( aleph `  x ) )
84, 7mpdan 673 . . . . . . . 8  |-  ( A  e.  On  ->  E. x  e.  On  A  C_  ( aleph `  x ) )
9 nfcv 2591 . . . . . . . . . 10  |-  F/_ x A
10 nfcv 2591 . . . . . . . . . . 11  |-  F/_ x aleph
11 nfrab1 2970 . . . . . . . . . . . 12  |-  F/_ x { x  e.  On  |  A  C_  ( aleph `  x ) }
1211nfint 4243 . . . . . . . . . . 11  |-  F/_ x |^| { x  e.  On  |  A  C_  ( aleph `  x ) }
1310, 12nffv 5870 . . . . . . . . . 10  |-  F/_ x
( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )
149, 13nfss 3424 . . . . . . . . 9  |-  F/ x  A  C_  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } )
15 fveq2 5863 . . . . . . . . . 10  |-  ( x  =  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  ->  ( aleph `  x
)  =  ( aleph ` 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) )
1615sseq2d 3459 . . . . . . . . 9  |-  ( x  =  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  ->  ( A  C_  ( aleph `  x )  <->  A 
C_  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } ) ) )
1714, 16onminsb 6623 . . . . . . . 8  |-  ( E. x  e.  On  A  C_  ( aleph `  x )  ->  A  C_  ( aleph ` 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) )
183, 8, 173syl 18 . . . . . . 7  |-  ( (
card `  A )  =  A  ->  A  C_  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) )
1918a1i 11 . . . . . 6  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  (/)  ->  ( ( card `  A
)  =  A  ->  A  C_  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } ) ) )
20 fveq2 5863 . . . . . . . . 9  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  (/)  ->  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  =  (
aleph `  (/) ) )
21 aleph0 8494 . . . . . . . . 9  |-  ( aleph `  (/) )  =  om
2220, 21syl6eq 2500 . . . . . . . 8  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  (/)  ->  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  =  om )
2322sseq1d 3458 . . . . . . 7  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  (/)  ->  ( ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } )  C_  A 
<->  om  C_  A )
)
2423biimprd 227 . . . . . 6  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  (/)  ->  ( om  C_  A  ->  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  C_  A
) )
2519, 24anim12d 566 . . . . 5  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  (/)  ->  ( ( ( card `  A )  =  A  /\  om  C_  A
)  ->  ( A  C_  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  /\  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  C_  A
) ) )
26 eqss 3446 . . . . 5  |-  ( A  =  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } )  <->  ( A  C_  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  /\  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  C_  A
) )
2725, 26syl6ibr 231 . . . 4  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  (/)  ->  ( ( ( card `  A )  =  A  /\  om  C_  A
)  ->  A  =  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
2827com12 32 . . 3  |-  ( ( ( card `  A
)  =  A  /\  om  C_  A )  ->  ( |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  (/) 
->  A  =  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
2928ancoms 455 . 2  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  ->  ( |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  (/) 
->  A  =  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
30 vex 3047 . . . . . . . . . . . 12  |-  y  e. 
_V
3130sucid 5501 . . . . . . . . . . 11  |-  y  e. 
suc  y
32 eleq2 2517 . . . . . . . . . . 11  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  suc  y  ->  ( y  e. 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) }  <->  y  e.  suc  y ) )
3331, 32mpbiri 237 . . . . . . . . . 10  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  suc  y  ->  y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } )
34 fveq2 5863 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( aleph `  x )  =  ( aleph `  y )
)
3534sseq2d 3459 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( A  C_  ( aleph `  x
)  <->  A  C_  ( aleph `  y ) ) )
3635onnminsb 6628 . . . . . . . . . 10  |-  ( y  e.  On  ->  (
y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  ->  -.  A  C_  ( aleph `  y ) ) )
3733, 36syl5 33 . . . . . . . . 9  |-  ( y  e.  On  ->  ( |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  ->  -.  A  C_  ( aleph `  y )
) )
3837imp 431 . . . . . . . 8  |-  ( ( y  e.  On  /\  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y )  ->  -.  A  C_  ( aleph `  y
) )
3938adantl 468 . . . . . . 7  |-  ( ( ( card `  A
)  =  A  /\  ( y  e.  On  /\ 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y ) )  ->  -.  A  C_  ( aleph `  y ) )
40 fveq2 5863 . . . . . . . . . . 11  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  suc  y  ->  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } )  =  ( aleph `  suc  y ) )
41 alephsuc 8496 . . . . . . . . . . 11  |-  ( y  e.  On  ->  ( aleph `  suc  y )  =  (har `  ( aleph `  y ) ) )
4240, 41sylan9eqr 2506 . . . . . . . . . 10  |-  ( ( y  e.  On  /\  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y )  ->  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  =  (har
`  ( aleph `  y
) ) )
4342eleq2d 2513 . . . . . . . . 9  |-  ( ( y  e.  On  /\  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y )  ->  ( A  e.  ( aleph ` 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  <-> 
A  e.  (har `  ( aleph `  y )
) ) )
4443biimpd 211 . . . . . . . 8  |-  ( ( y  e.  On  /\  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y )  ->  ( A  e.  ( aleph ` 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  A  e.  (har
`  ( aleph `  y
) ) ) )
45 elharval 8075 . . . . . . . . . 10  |-  ( A  e.  (har `  ( aleph `  y ) )  <-> 
( A  e.  On  /\  A  ~<_  ( aleph `  y
) ) )
4645simprbi 466 . . . . . . . . 9  |-  ( A  e.  (har `  ( aleph `  y ) )  ->  A  ~<_  ( aleph `  y ) )
47 onenon 8380 . . . . . . . . . . . 12  |-  ( A  e.  On  ->  A  e.  dom  card )
483, 47syl 17 . . . . . . . . . . 11  |-  ( (
card `  A )  =  A  ->  A  e. 
dom  card )
49 alephon 8497 . . . . . . . . . . . 12  |-  ( aleph `  y )  e.  On
50 onenon 8380 . . . . . . . . . . . 12  |-  ( (
aleph `  y )  e.  On  ->  ( aleph `  y )  e.  dom  card )
5149, 50ax-mp 5 . . . . . . . . . . 11  |-  ( aleph `  y )  e.  dom  card
52 carddom2 8408 . . . . . . . . . . 11  |-  ( ( A  e.  dom  card  /\  ( aleph `  y )  e.  dom  card )  ->  (
( card `  A )  C_  ( card `  ( aleph `  y ) )  <-> 
A  ~<_  ( aleph `  y
) ) )
5348, 51, 52sylancl 667 . . . . . . . . . 10  |-  ( (
card `  A )  =  A  ->  ( (
card `  A )  C_  ( card `  ( aleph `  y ) )  <-> 
A  ~<_  ( aleph `  y
) ) )
54 sseq1 3452 . . . . . . . . . . 11  |-  ( (
card `  A )  =  A  ->  ( (
card `  A )  C_  ( card `  ( aleph `  y ) )  <-> 
A  C_  ( card `  ( aleph `  y )
) ) )
55 alephcard 8498 . . . . . . . . . . . 12  |-  ( card `  ( aleph `  y )
)  =  ( aleph `  y )
5655sseq2i 3456 . . . . . . . . . . 11  |-  ( A 
C_  ( card `  ( aleph `  y ) )  <-> 
A  C_  ( aleph `  y ) )
5754, 56syl6bb 265 . . . . . . . . . 10  |-  ( (
card `  A )  =  A  ->  ( (
card `  A )  C_  ( card `  ( aleph `  y ) )  <-> 
A  C_  ( aleph `  y ) ) )
5853, 57bitr3d 259 . . . . . . . . 9  |-  ( (
card `  A )  =  A  ->  ( A  ~<_  ( aleph `  y )  <->  A 
C_  ( aleph `  y
) ) )
5946, 58syl5ib 223 . . . . . . . 8  |-  ( (
card `  A )  =  A  ->  ( A  e.  (har `  ( aleph `  y ) )  ->  A  C_  ( aleph `  y ) ) )
6044, 59sylan9r 663 . . . . . . 7  |-  ( ( ( card `  A
)  =  A  /\  ( y  e.  On  /\ 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y ) )  -> 
( A  e.  (
aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  A  C_  ( aleph `  y )
) )
6139, 60mtod 181 . . . . . 6  |-  ( ( ( card `  A
)  =  A  /\  ( y  e.  On  /\ 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y ) )  ->  -.  A  e.  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) )
6261rexlimdvaa 2879 . . . . 5  |-  ( (
card `  A )  =  A  ->  ( E. y  e.  On  |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  suc  y  ->  -.  A  e.  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
63 onintrab2 6626 . . . . . . . . . . . . . 14  |-  ( E. x  e.  On  A  C_  ( aleph `  x )  <->  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  e.  On )
648, 63sylib 200 . . . . . . . . . . . . 13  |-  ( A  e.  On  ->  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  e.  On )
65 onelon 5447 . . . . . . . . . . . . 13  |-  ( (
|^| { x  e.  On  |  A  C_  ( aleph `  x ) }  e.  On  /\  y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } )  -> 
y  e.  On )
6664, 65sylan 474 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  y  e.  On )
6736adantld 469 . . . . . . . . . . . 12  |-  ( y  e.  On  ->  (
( A  e.  On  /\  y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  -.  A  C_  ( aleph `  y
) ) )
6866, 67mpcom 37 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  -.  A  C_  ( aleph `  y
) )
6949onelssi 5530 . . . . . . . . . . 11  |-  ( A  e.  ( aleph `  y
)  ->  A  C_  ( aleph `  y ) )
7068, 69nsyl 125 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  -.  A  e.  ( aleph `  y ) )
7170nrexdv 2842 . . . . . . . . 9  |-  ( A  e.  On  ->  -.  E. y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } A  e.  ( aleph `  y ) )
7271adantr 467 . . . . . . . 8  |-  ( ( A  e.  On  /\  Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  -.  E. y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } A  e.  ( aleph `  y ) )
73 alephlim 8495 . . . . . . . . . . 11  |-  ( (
|^| { x  e.  On  |  A  C_  ( aleph `  x ) }  e.  On  /\  Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  =  U_ y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  ( aleph `  y
) )
7464, 73sylan 474 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  =  U_ y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  ( aleph `  y
) )
7574eleq2d 2513 . . . . . . . . 9  |-  ( ( A  e.  On  /\  Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  ( A  e.  ( aleph ` 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  <-> 
A  e.  U_ y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  ( aleph `  y
) ) )
76 eliun 4282 . . . . . . . . 9  |-  ( A  e.  U_ y  e. 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) }  ( aleph `  y )  <->  E. y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } A  e.  ( aleph `  y ) )
7775, 76syl6bb 265 . . . . . . . 8  |-  ( ( A  e.  On  /\  Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  ( A  e.  ( aleph ` 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  <->  E. y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } A  e.  ( aleph `  y ) ) )
7872, 77mtbird 303 . . . . . . 7  |-  ( ( A  e.  On  /\  Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  -.  A  e.  ( aleph ` 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) )
7978ex 436 . . . . . 6  |-  ( A  e.  On  ->  ( Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  ->  -.  A  e.  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
803, 79syl 17 . . . . 5  |-  ( (
card `  A )  =  A  ->  ( Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  ->  -.  A  e.  ( aleph ` 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
8162, 80jaod 382 . . . 4  |-  ( (
card `  A )  =  A  ->  ( ( E. y  e.  On  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  \/  Lim  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  -.  A  e.  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
828, 17syl 17 . . . . . 6  |-  ( A  e.  On  ->  A  C_  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) )
83 alephon 8497 . . . . . . 7  |-  ( aleph ` 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  e.  On
84 onsseleq 5463 . . . . . . 7  |-  ( ( A  e.  On  /\  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  e.  On )  ->  ( A  C_  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  <->  ( A  e.  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  \/  A  =  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } ) ) ) )
8583, 84mpan2 676 . . . . . 6  |-  ( A  e.  On  ->  ( A  C_  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } )  <->  ( A  e.  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  \/  A  =  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } ) ) ) )
8682, 85mpbid 214 . . . . 5  |-  ( A  e.  On  ->  ( A  e.  ( aleph ` 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  \/  A  =  (
aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
8786ord 379 . . . 4  |-  ( A  e.  On  ->  ( -.  A  e.  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  A  =  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } ) ) )
883, 81, 87sylsyld 58 . . 3  |-  ( (
card `  A )  =  A  ->  ( ( E. y  e.  On  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  \/  Lim  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  A  =  (
aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
8988adantl 468 . 2  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  ->  (
( E. y  e.  On  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  \/ 
Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  A  =  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } ) ) )
90 eloni 5432 . . . . 5  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  e.  On  ->  Ord  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )
91 ordzsl 6669 . . . . . 6  |-  ( Ord  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  <->  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  (/)  \/ 
E. y  e.  On  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  \/  Lim  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) } ) )
92 3orass 987 . . . . . 6  |-  ( (
|^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  (/) 
\/  E. y  e.  On  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  \/  Lim  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) } )  <-> 
( |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  (/)  \/  ( E. y  e.  On  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  \/  Lim  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
9391, 92bitri 253 . . . . 5  |-  ( Ord  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  <->  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  (/)  \/  ( E. y  e.  On  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  \/ 
Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
9490, 93sylib 200 . . . 4  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  e.  On  ->  ( |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  (/)  \/  ( E. y  e.  On  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  \/  Lim  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
953, 64, 943syl 18 . . 3  |-  ( (
card `  A )  =  A  ->  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  (/)  \/  ( E. y  e.  On  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  \/ 
Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
9695adantl 468 . 2  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  ->  ( |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  (/) 
\/  ( E. y  e.  On  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  \/ 
Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
9729, 89, 96mpjaod 383 1  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  ->  A  =  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    \/ w3o 983    = wceq 1443    e. wcel 1886   E.wrex 2737   {crab 2740    C_ wss 3403   (/)c0 3730   |^|cint 4233   U_ciun 4277   class class class wbr 4401   dom cdm 4833   Ord word 5421   Oncon0 5422   Lim wlim 5423   suc csuc 5424   ` cfv 5581   omcom 6689    ~<_ cdom 7564  harchar 8068   cardccrd 8366   alephcale 8367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-inf2 8143
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-se 4793  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6250  df-om 6690  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-er 7360  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-oi 8022  df-har 8070  df-card 8370  df-aleph 8371
This theorem is referenced by:  cardalephex  8518  tskcard  9203
  Copyright terms: Public domain W3C validator