MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardaleph Structured version   Visualization version   Unicode version

Theorem cardaleph 8538
Description: Given any transfinite cardinal number  A, there is exactly one aleph that is equal to it. Here we compute that aleph explicitly. (Contributed by NM, 9-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
cardaleph  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  ->  A  =  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } ) )
Distinct variable group:    x, A

Proof of Theorem cardaleph
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cardon 8396 . . . . . . . . 9  |-  ( card `  A )  e.  On
2 eleq1 2537 . . . . . . . . 9  |-  ( (
card `  A )  =  A  ->  ( (
card `  A )  e.  On  <->  A  e.  On ) )
31, 2mpbii 216 . . . . . . . 8  |-  ( (
card `  A )  =  A  ->  A  e.  On )
4 alephle 8537 . . . . . . . . 9  |-  ( A  e.  On  ->  A  C_  ( aleph `  A )
)
5 fveq2 5879 . . . . . . . . . . 11  |-  ( x  =  A  ->  ( aleph `  x )  =  ( aleph `  A )
)
65sseq2d 3446 . . . . . . . . . 10  |-  ( x  =  A  ->  ( A  C_  ( aleph `  x
)  <->  A  C_  ( aleph `  A ) ) )
76rspcev 3136 . . . . . . . . 9  |-  ( ( A  e.  On  /\  A  C_  ( aleph `  A
) )  ->  E. x  e.  On  A  C_  ( aleph `  x ) )
84, 7mpdan 681 . . . . . . . 8  |-  ( A  e.  On  ->  E. x  e.  On  A  C_  ( aleph `  x ) )
9 nfcv 2612 . . . . . . . . . 10  |-  F/_ x A
10 nfcv 2612 . . . . . . . . . . 11  |-  F/_ x aleph
11 nfrab1 2957 . . . . . . . . . . . 12  |-  F/_ x { x  e.  On  |  A  C_  ( aleph `  x ) }
1211nfint 4236 . . . . . . . . . . 11  |-  F/_ x |^| { x  e.  On  |  A  C_  ( aleph `  x ) }
1310, 12nffv 5886 . . . . . . . . . 10  |-  F/_ x
( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )
149, 13nfss 3411 . . . . . . . . 9  |-  F/ x  A  C_  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } )
15 fveq2 5879 . . . . . . . . . 10  |-  ( x  =  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  ->  ( aleph `  x
)  =  ( aleph ` 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) )
1615sseq2d 3446 . . . . . . . . 9  |-  ( x  =  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  ->  ( A  C_  ( aleph `  x )  <->  A 
C_  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } ) ) )
1714, 16onminsb 6645 . . . . . . . 8  |-  ( E. x  e.  On  A  C_  ( aleph `  x )  ->  A  C_  ( aleph ` 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) )
183, 8, 173syl 18 . . . . . . 7  |-  ( (
card `  A )  =  A  ->  A  C_  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) )
1918a1i 11 . . . . . 6  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  (/)  ->  ( ( card `  A
)  =  A  ->  A  C_  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } ) ) )
20 fveq2 5879 . . . . . . . . 9  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  (/)  ->  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  =  (
aleph `  (/) ) )
21 aleph0 8515 . . . . . . . . 9  |-  ( aleph `  (/) )  =  om
2220, 21syl6eq 2521 . . . . . . . 8  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  (/)  ->  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  =  om )
2322sseq1d 3445 . . . . . . 7  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  (/)  ->  ( ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } )  C_  A 
<->  om  C_  A )
)
2423biimprd 231 . . . . . 6  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  (/)  ->  ( om  C_  A  ->  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  C_  A
) )
2519, 24anim12d 572 . . . . 5  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  (/)  ->  ( ( ( card `  A )  =  A  /\  om  C_  A
)  ->  ( A  C_  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  /\  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  C_  A
) ) )
26 eqss 3433 . . . . 5  |-  ( A  =  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } )  <->  ( A  C_  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  /\  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  C_  A
) )
2725, 26syl6ibr 235 . . . 4  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  (/)  ->  ( ( ( card `  A )  =  A  /\  om  C_  A
)  ->  A  =  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
2827com12 31 . . 3  |-  ( ( ( card `  A
)  =  A  /\  om  C_  A )  ->  ( |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  (/) 
->  A  =  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
2928ancoms 460 . 2  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  ->  ( |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  (/) 
->  A  =  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
30 vex 3034 . . . . . . . . . . . 12  |-  y  e. 
_V
3130sucid 5509 . . . . . . . . . . 11  |-  y  e. 
suc  y
32 eleq2 2538 . . . . . . . . . . 11  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  suc  y  ->  ( y  e. 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) }  <->  y  e.  suc  y ) )
3331, 32mpbiri 241 . . . . . . . . . 10  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  suc  y  ->  y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } )
34 fveq2 5879 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( aleph `  x )  =  ( aleph `  y )
)
3534sseq2d 3446 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( A  C_  ( aleph `  x
)  <->  A  C_  ( aleph `  y ) ) )
3635onnminsb 6650 . . . . . . . . . 10  |-  ( y  e.  On  ->  (
y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  ->  -.  A  C_  ( aleph `  y ) ) )
3733, 36syl5 32 . . . . . . . . 9  |-  ( y  e.  On  ->  ( |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  ->  -.  A  C_  ( aleph `  y )
) )
3837imp 436 . . . . . . . 8  |-  ( ( y  e.  On  /\  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y )  ->  -.  A  C_  ( aleph `  y
) )
3938adantl 473 . . . . . . 7  |-  ( ( ( card `  A
)  =  A  /\  ( y  e.  On  /\ 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y ) )  ->  -.  A  C_  ( aleph `  y ) )
40 fveq2 5879 . . . . . . . . . . 11  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  suc  y  ->  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } )  =  ( aleph `  suc  y ) )
41 alephsuc 8517 . . . . . . . . . . 11  |-  ( y  e.  On  ->  ( aleph `  suc  y )  =  (har `  ( aleph `  y ) ) )
4240, 41sylan9eqr 2527 . . . . . . . . . 10  |-  ( ( y  e.  On  /\  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y )  ->  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  =  (har
`  ( aleph `  y
) ) )
4342eleq2d 2534 . . . . . . . . 9  |-  ( ( y  e.  On  /\  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y )  ->  ( A  e.  ( aleph ` 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  <-> 
A  e.  (har `  ( aleph `  y )
) ) )
4443biimpd 212 . . . . . . . 8  |-  ( ( y  e.  On  /\  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y )  ->  ( A  e.  ( aleph ` 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  A  e.  (har
`  ( aleph `  y
) ) ) )
45 elharval 8096 . . . . . . . . . 10  |-  ( A  e.  (har `  ( aleph `  y ) )  <-> 
( A  e.  On  /\  A  ~<_  ( aleph `  y
) ) )
4645simprbi 471 . . . . . . . . 9  |-  ( A  e.  (har `  ( aleph `  y ) )  ->  A  ~<_  ( aleph `  y ) )
47 onenon 8401 . . . . . . . . . . . 12  |-  ( A  e.  On  ->  A  e.  dom  card )
483, 47syl 17 . . . . . . . . . . 11  |-  ( (
card `  A )  =  A  ->  A  e. 
dom  card )
49 alephon 8518 . . . . . . . . . . . 12  |-  ( aleph `  y )  e.  On
50 onenon 8401 . . . . . . . . . . . 12  |-  ( (
aleph `  y )  e.  On  ->  ( aleph `  y )  e.  dom  card )
5149, 50ax-mp 5 . . . . . . . . . . 11  |-  ( aleph `  y )  e.  dom  card
52 carddom2 8429 . . . . . . . . . . 11  |-  ( ( A  e.  dom  card  /\  ( aleph `  y )  e.  dom  card )  ->  (
( card `  A )  C_  ( card `  ( aleph `  y ) )  <-> 
A  ~<_  ( aleph `  y
) ) )
5348, 51, 52sylancl 675 . . . . . . . . . 10  |-  ( (
card `  A )  =  A  ->  ( (
card `  A )  C_  ( card `  ( aleph `  y ) )  <-> 
A  ~<_  ( aleph `  y
) ) )
54 sseq1 3439 . . . . . . . . . . 11  |-  ( (
card `  A )  =  A  ->  ( (
card `  A )  C_  ( card `  ( aleph `  y ) )  <-> 
A  C_  ( card `  ( aleph `  y )
) ) )
55 alephcard 8519 . . . . . . . . . . . 12  |-  ( card `  ( aleph `  y )
)  =  ( aleph `  y )
5655sseq2i 3443 . . . . . . . . . . 11  |-  ( A 
C_  ( card `  ( aleph `  y ) )  <-> 
A  C_  ( aleph `  y ) )
5754, 56syl6bb 269 . . . . . . . . . 10  |-  ( (
card `  A )  =  A  ->  ( (
card `  A )  C_  ( card `  ( aleph `  y ) )  <-> 
A  C_  ( aleph `  y ) ) )
5853, 57bitr3d 263 . . . . . . . . 9  |-  ( (
card `  A )  =  A  ->  ( A  ~<_  ( aleph `  y )  <->  A 
C_  ( aleph `  y
) ) )
5946, 58syl5ib 227 . . . . . . . 8  |-  ( (
card `  A )  =  A  ->  ( A  e.  (har `  ( aleph `  y ) )  ->  A  C_  ( aleph `  y ) ) )
6044, 59sylan9r 670 . . . . . . 7  |-  ( ( ( card `  A
)  =  A  /\  ( y  e.  On  /\ 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y ) )  -> 
( A  e.  (
aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  A  C_  ( aleph `  y )
) )
6139, 60mtod 182 . . . . . 6  |-  ( ( ( card `  A
)  =  A  /\  ( y  e.  On  /\ 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y ) )  ->  -.  A  e.  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) )
6261rexlimdvaa 2872 . . . . 5  |-  ( (
card `  A )  =  A  ->  ( E. y  e.  On  |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  suc  y  ->  -.  A  e.  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
63 onintrab2 6648 . . . . . . . . . . . . . 14  |-  ( E. x  e.  On  A  C_  ( aleph `  x )  <->  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  e.  On )
648, 63sylib 201 . . . . . . . . . . . . 13  |-  ( A  e.  On  ->  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  e.  On )
65 onelon 5455 . . . . . . . . . . . . 13  |-  ( (
|^| { x  e.  On  |  A  C_  ( aleph `  x ) }  e.  On  /\  y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } )  -> 
y  e.  On )
6664, 65sylan 479 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  y  e.  On )
6736adantld 474 . . . . . . . . . . . 12  |-  ( y  e.  On  ->  (
( A  e.  On  /\  y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  -.  A  C_  ( aleph `  y
) ) )
6866, 67mpcom 36 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  -.  A  C_  ( aleph `  y
) )
6949onelssi 5538 . . . . . . . . . . 11  |-  ( A  e.  ( aleph `  y
)  ->  A  C_  ( aleph `  y ) )
7068, 69nsyl 125 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  -.  A  e.  ( aleph `  y ) )
7170nrexdv 2842 . . . . . . . . 9  |-  ( A  e.  On  ->  -.  E. y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } A  e.  ( aleph `  y ) )
7271adantr 472 . . . . . . . 8  |-  ( ( A  e.  On  /\  Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  -.  E. y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } A  e.  ( aleph `  y ) )
73 alephlim 8516 . . . . . . . . . . 11  |-  ( (
|^| { x  e.  On  |  A  C_  ( aleph `  x ) }  e.  On  /\  Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  =  U_ y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  ( aleph `  y
) )
7464, 73sylan 479 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  =  U_ y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  ( aleph `  y
) )
7574eleq2d 2534 . . . . . . . . 9  |-  ( ( A  e.  On  /\  Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  ( A  e.  ( aleph ` 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  <-> 
A  e.  U_ y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  ( aleph `  y
) ) )
76 eliun 4274 . . . . . . . . 9  |-  ( A  e.  U_ y  e. 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) }  ( aleph `  y )  <->  E. y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } A  e.  ( aleph `  y ) )
7775, 76syl6bb 269 . . . . . . . 8  |-  ( ( A  e.  On  /\  Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  ( A  e.  ( aleph ` 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  <->  E. y  e.  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } A  e.  ( aleph `  y ) ) )
7872, 77mtbird 308 . . . . . . 7  |-  ( ( A  e.  On  /\  Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  -.  A  e.  ( aleph ` 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) )
7978ex 441 . . . . . 6  |-  ( A  e.  On  ->  ( Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  ->  -.  A  e.  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
803, 79syl 17 . . . . 5  |-  ( (
card `  A )  =  A  ->  ( Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  ->  -.  A  e.  ( aleph ` 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
8162, 80jaod 387 . . . 4  |-  ( (
card `  A )  =  A  ->  ( ( E. y  e.  On  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  \/  Lim  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  -.  A  e.  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
828, 17syl 17 . . . . . 6  |-  ( A  e.  On  ->  A  C_  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) )
83 alephon 8518 . . . . . . 7  |-  ( aleph ` 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  e.  On
84 onsseleq 5471 . . . . . . 7  |-  ( ( A  e.  On  /\  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  e.  On )  ->  ( A  C_  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  <->  ( A  e.  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  \/  A  =  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } ) ) ) )
8583, 84mpan2 685 . . . . . 6  |-  ( A  e.  On  ->  ( A  C_  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } )  <->  ( A  e.  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  \/  A  =  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } ) ) ) )
8682, 85mpbid 215 . . . . 5  |-  ( A  e.  On  ->  ( A  e.  ( aleph ` 
|^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  \/  A  =  (
aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
8786ord 384 . . . 4  |-  ( A  e.  On  ->  ( -.  A  e.  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  A  =  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } ) ) )
883, 81, 87sylsyld 57 . . 3  |-  ( (
card `  A )  =  A  ->  ( ( E. y  e.  On  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  \/  Lim  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  A  =  (
aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
8988adantl 473 . 2  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  ->  (
( E. y  e.  On  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  \/ 
Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )  ->  A  =  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } ) ) )
90 eloni 5440 . . . . 5  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  e.  On  ->  Ord  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } )
91 ordzsl 6691 . . . . . 6  |-  ( Ord  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  <->  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  (/)  \/ 
E. y  e.  On  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  \/  Lim  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) } ) )
92 3orass 1010 . . . . . 6  |-  ( (
|^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  (/) 
\/  E. y  e.  On  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  \/  Lim  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) } )  <-> 
( |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  (/)  \/  ( E. y  e.  On  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  \/  Lim  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
9391, 92bitri 257 . . . . 5  |-  ( Ord  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  <->  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  (/)  \/  ( E. y  e.  On  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  \/ 
Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
9490, 93sylib 201 . . . 4  |-  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  e.  On  ->  ( |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  (/)  \/  ( E. y  e.  On  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  \/  Lim  |^|
{ x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
953, 64, 943syl 18 . . 3  |-  ( (
card `  A )  =  A  ->  ( |^| { x  e.  On  |  A  C_  ( aleph `  x
) }  =  (/)  \/  ( E. y  e.  On  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  \/ 
Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
9695adantl 473 . 2  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  ->  ( |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  (/) 
\/  ( E. y  e.  On  |^| { x  e.  On  |  A  C_  ( aleph `  x ) }  =  suc  y  \/ 
Lim  |^| { x  e.  On  |  A  C_  ( aleph `  x ) } ) ) )
9729, 89, 96mpjaod 388 1  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  ->  A  =  ( aleph `  |^| { x  e.  On  |  A  C_  ( aleph `  x
) } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    \/ w3o 1006    = wceq 1452    e. wcel 1904   E.wrex 2757   {crab 2760    C_ wss 3390   (/)c0 3722   |^|cint 4226   U_ciun 4269   class class class wbr 4395   dom cdm 4839   Ord word 5429   Oncon0 5430   Lim wlim 5431   suc csuc 5432   ` cfv 5589   omcom 6711    ~<_ cdom 7585  harchar 8089   cardccrd 8387   alephcale 8388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-oi 8043  df-har 8091  df-card 8391  df-aleph 8392
This theorem is referenced by:  cardalephex  8539  tskcard  9224
  Copyright terms: Public domain W3C validator