Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephon Structured version   Visualization version   GIF version

Theorem alephon 8775
 Description: An aleph is an ordinal number. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
alephon (ℵ‘𝐴) ∈ On

Proof of Theorem alephon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 8771 . . 3 ℵ Fn On
2 fveq2 6103 . . . . . 6 (𝑥 = ∅ → (ℵ‘𝑥) = (ℵ‘∅))
32eleq1d 2672 . . . . 5 (𝑥 = ∅ → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘∅) ∈ On))
4 fveq2 6103 . . . . . 6 (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦))
54eleq1d 2672 . . . . 5 (𝑥 = 𝑦 → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘𝑦) ∈ On))
6 fveq2 6103 . . . . . 6 (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦))
76eleq1d 2672 . . . . 5 (𝑥 = suc 𝑦 → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘suc 𝑦) ∈ On))
8 aleph0 8772 . . . . . 6 (ℵ‘∅) = ω
9 omelon 8426 . . . . . 6 ω ∈ On
108, 9eqeltri 2684 . . . . 5 (ℵ‘∅) ∈ On
11 alephsuc 8774 . . . . . . 7 (𝑦 ∈ On → (ℵ‘suc 𝑦) = (har‘(ℵ‘𝑦)))
12 harcl 8349 . . . . . . 7 (har‘(ℵ‘𝑦)) ∈ On
1311, 12syl6eqel 2696 . . . . . 6 (𝑦 ∈ On → (ℵ‘suc 𝑦) ∈ On)
1413a1d 25 . . . . 5 (𝑦 ∈ On → ((ℵ‘𝑦) ∈ On → (ℵ‘suc 𝑦) ∈ On))
15 vex 3176 . . . . . . 7 𝑥 ∈ V
16 iunon 7323 . . . . . . 7 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (ℵ‘𝑦) ∈ On) → 𝑦𝑥 (ℵ‘𝑦) ∈ On)
1715, 16mpan 702 . . . . . 6 (∀𝑦𝑥 (ℵ‘𝑦) ∈ On → 𝑦𝑥 (ℵ‘𝑦) ∈ On)
18 alephlim 8773 . . . . . . . 8 ((𝑥 ∈ V ∧ Lim 𝑥) → (ℵ‘𝑥) = 𝑦𝑥 (ℵ‘𝑦))
1915, 18mpan 702 . . . . . . 7 (Lim 𝑥 → (ℵ‘𝑥) = 𝑦𝑥 (ℵ‘𝑦))
2019eleq1d 2672 . . . . . 6 (Lim 𝑥 → ((ℵ‘𝑥) ∈ On ↔ 𝑦𝑥 (ℵ‘𝑦) ∈ On))
2117, 20syl5ibr 235 . . . . 5 (Lim 𝑥 → (∀𝑦𝑥 (ℵ‘𝑦) ∈ On → (ℵ‘𝑥) ∈ On))
223, 5, 7, 5, 10, 14, 21tfinds 6951 . . . 4 (𝑦 ∈ On → (ℵ‘𝑦) ∈ On)
2322rgen 2906 . . 3 𝑦 ∈ On (ℵ‘𝑦) ∈ On
24 ffnfv 6295 . . 3 (ℵ:On⟶On ↔ (ℵ Fn On ∧ ∀𝑦 ∈ On (ℵ‘𝑦) ∈ On))
251, 23, 24mpbir2an 957 . 2 ℵ:On⟶On
26 0elon 5695 . 2 ∅ ∈ On
2725, 26f0cli 6278 1 (ℵ‘𝐴) ∈ On
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173  ∅c0 3874  ∪ ciun 4455  Oncon0 5640  Lim wlim 5641  suc csuc 5642   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  ωcom 6957  harchar 8344  ℵcale 8645 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-en 7842  df-dom 7843  df-oi 8298  df-har 8346  df-aleph 8649 This theorem is referenced by:  alephnbtwn  8777  alephnbtwn2  8778  alephordilem1  8779  alephord  8781  alephord2  8782  alephord3  8784  alephsucdom  8785  alephsuc2  8786  alephf1  8791  alephsdom  8792  alephdom2  8793  alephle  8794  cardaleph  8795  alephf1ALT  8809  alephfp  8814  dfac12k  8852  alephsing  8981  alephval2  9273  alephadd  9278  alephmul  9279  alephexp1  9280  alephsuc3  9281  alephreg  9283  pwcfsdom  9284  cfpwsdom  9285  gchaleph  9372  gchaleph2  9373  gch2  9376
 Copyright terms: Public domain W3C validator