Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elharval | Structured version Visualization version GIF version |
Description: The Hartogs number of a set is greater than all ordinals which inject into it. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
elharval | ⊢ (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvex 6131 | . 2 ⊢ (𝑌 ∈ (har‘𝑋) → 𝑋 ∈ V) | |
2 | reldom 7847 | . . . 4 ⊢ Rel ≼ | |
3 | 2 | brrelex2i 5083 | . . 3 ⊢ (𝑌 ≼ 𝑋 → 𝑋 ∈ V) |
4 | 3 | adantl 481 | . 2 ⊢ ((𝑌 ∈ On ∧ 𝑌 ≼ 𝑋) → 𝑋 ∈ V) |
5 | harval 8350 | . . . 4 ⊢ (𝑋 ∈ V → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) | |
6 | 5 | eleq2d 2673 | . . 3 ⊢ (𝑋 ∈ V → (𝑌 ∈ (har‘𝑋) ↔ 𝑌 ∈ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋})) |
7 | breq1 4586 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑦 ≼ 𝑋 ↔ 𝑌 ≼ 𝑋)) | |
8 | 7 | elrab 3331 | . . 3 ⊢ (𝑌 ∈ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋} ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋)) |
9 | 6, 8 | syl6bb 275 | . 2 ⊢ (𝑋 ∈ V → (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋))) |
10 | 1, 4, 9 | pm5.21nii 367 | 1 ⊢ (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 ∈ wcel 1977 {crab 2900 Vcvv 3173 class class class wbr 4583 Oncon0 5640 ‘cfv 5804 ≼ cdom 7839 harchar 8344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-wrecs 7294 df-recs 7355 df-en 7842 df-dom 7843 df-oi 8298 df-har 8346 |
This theorem is referenced by: harndom 8352 harcard 8687 cardprclem 8688 cardaleph 8795 dfac12lem2 8849 hsmexlem1 9131 pwcfsdom 9284 pwfseqlem5 9364 hargch 9374 harinf 36619 harn0 36691 |
Copyright terms: Public domain | W3C validator |