MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskcard Structured version   Unicode version

Theorem tskcard 9176
Description: An even more direct relationship than r1tskina 9177 to get an inaccessible cardinal out of a Tarski class: the size of any nonempty Tarski class is an inaccessible cardinal. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
tskcard  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  ( card `  T )  e. 
Inacc )

Proof of Theorem tskcard
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardeq0 8944 . . . 4  |-  ( T  e.  Tarski  ->  ( ( card `  T )  =  (/)  <->  T  =  (/) ) )
21necon3bid 2715 . . 3  |-  ( T  e.  Tarski  ->  ( ( card `  T )  =/=  (/)  <->  T  =/=  (/) ) )
32biimpar 485 . 2  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  ( card `  T )  =/=  (/) )
4 eqid 2457 . . . . . 6  |-  ( z  e.  ( cf `  ( aleph `  |^| { x  e.  On  |  ( card `  T )  C_  ( aleph `  x ) } ) )  |->  (har `  ( w `  z
) ) )  =  ( z  e.  ( cf `  ( aleph ` 
|^| { x  e.  On  |  ( card `  T
)  C_  ( aleph `  x ) } ) )  |->  (har `  (
w `  z )
) )
54pwcfsdom 8975 . . . . 5  |-  ( aleph ` 
|^| { x  e.  On  |  ( card `  T
)  C_  ( aleph `  x ) } ) 
~<  ( ( aleph `  |^| { x  e.  On  | 
( card `  T )  C_  ( aleph `  x ) } )  ^m  ( cf `  ( aleph `  |^| { x  e.  On  | 
( card `  T )  C_  ( aleph `  x ) } ) ) )
6 vex 3112 . . . . . . . . . . . . 13  |-  x  e. 
_V
76pwex 4639 . . . . . . . . . . . 12  |-  ~P x  e.  _V
87canth2 7689 . . . . . . . . . . 11  |-  ~P x  ~<  ~P ~P x
9 simpl 457 . . . . . . . . . . . . 13  |-  ( ( T  e.  Tarski  /\  x  e.  ( card `  T
) )  ->  T  e.  Tarski )
10 cardon 8342 . . . . . . . . . . . . . . . . 17  |-  ( card `  T )  e.  On
1110oneli 4994 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( card `  T
)  ->  x  e.  On )
1211adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  Tarski  /\  x  e.  ( card `  T
) )  ->  x  e.  On )
13 cardsdomelir 8371 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( card `  T
)  ->  x  ~<  T )
1413adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  Tarski  /\  x  e.  ( card `  T
) )  ->  x  ~<  T )
15 tskord 9175 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  Tarski  /\  x  e.  On  /\  x  ~<  T )  ->  x  e.  T )
169, 12, 14, 15syl3anc 1228 . . . . . . . . . . . . . 14  |-  ( ( T  e.  Tarski  /\  x  e.  ( card `  T
) )  ->  x  e.  T )
17 tskpw 9148 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  Tarski  /\  x  e.  T )  ->  ~P x  e.  T )
18 tskpwss 9147 . . . . . . . . . . . . . . 15  |-  ( ( T  e.  Tarski  /\  ~P x  e.  T )  ->  ~P ~P x  C_  T )
1917, 18syldan 470 . . . . . . . . . . . . . 14  |-  ( ( T  e.  Tarski  /\  x  e.  T )  ->  ~P ~P x  C_  T )
2016, 19syldan 470 . . . . . . . . . . . . 13  |-  ( ( T  e.  Tarski  /\  x  e.  ( card `  T
) )  ->  ~P ~P x  C_  T )
21 ssdomg 7580 . . . . . . . . . . . . 13  |-  ( T  e.  Tarski  ->  ( ~P ~P x  C_  T  ->  ~P ~P x  ~<_  T )
)
229, 20, 21sylc 60 . . . . . . . . . . . 12  |-  ( ( T  e.  Tarski  /\  x  e.  ( card `  T
) )  ->  ~P ~P x  ~<_  T )
23 cardidg 8940 . . . . . . . . . . . . . 14  |-  ( T  e.  Tarski  ->  ( card `  T
)  ~~  T )
2423ensymd 7585 . . . . . . . . . . . . 13  |-  ( T  e.  Tarski  ->  T  ~~  ( card `  T ) )
2524adantr 465 . . . . . . . . . . . 12  |-  ( ( T  e.  Tarski  /\  x  e.  ( card `  T
) )  ->  T  ~~  ( card `  T
) )
26 domentr 7593 . . . . . . . . . . . 12  |-  ( ( ~P ~P x  ~<_  T  /\  T  ~~  ( card `  T ) )  ->  ~P ~P x  ~<_  ( card `  T )
)
2722, 25, 26syl2anc 661 . . . . . . . . . . 11  |-  ( ( T  e.  Tarski  /\  x  e.  ( card `  T
) )  ->  ~P ~P x  ~<_  ( card `  T ) )
28 sdomdomtr 7669 . . . . . . . . . . 11  |-  ( ( ~P x  ~<  ~P ~P x  /\  ~P ~P x  ~<_  ( card `  T )
)  ->  ~P x  ~<  ( card `  T
) )
298, 27, 28sylancr 663 . . . . . . . . . 10  |-  ( ( T  e.  Tarski  /\  x  e.  ( card `  T
) )  ->  ~P x  ~<  ( card `  T
) )
3029ralrimiva 2871 . . . . . . . . 9  |-  ( T  e.  Tarski  ->  A. x  e.  (
card `  T ) ~P x  ~<  ( card `  T ) )
3130adantr 465 . . . . . . . 8  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  A. x  e.  ( card `  T
) ~P x  ~<  (
card `  T )
)
32 inawinalem 9084 . . . . . . . . . 10  |-  ( (
card `  T )  e.  On  ->  ( A. x  e.  ( card `  T ) ~P x  ~<  ( card `  T
)  ->  A. x  e.  ( card `  T
) E. y  e.  ( card `  T
) x  ~<  y
) )
3310, 32ax-mp 5 . . . . . . . . 9  |-  ( A. x  e.  ( card `  T ) ~P x  ~<  ( card `  T
)  ->  A. x  e.  ( card `  T
) E. y  e.  ( card `  T
) x  ~<  y
)
34 winainflem 9088 . . . . . . . . . 10  |-  ( ( ( card `  T
)  =/=  (/)  /\  ( card `  T )  e.  On  /\  A. x  e.  ( card `  T
) E. y  e.  ( card `  T
) x  ~<  y
)  ->  om  C_  ( card `  T ) )
3510, 34mp3an2 1312 . . . . . . . . 9  |-  ( ( ( card `  T
)  =/=  (/)  /\  A. x  e.  ( card `  T ) E. y  e.  ( card `  T
) x  ~<  y
)  ->  om  C_  ( card `  T ) )
3633, 35sylan2 474 . . . . . . . 8  |-  ( ( ( card `  T
)  =/=  (/)  /\  A. x  e.  ( card `  T ) ~P x  ~<  ( card `  T
) )  ->  om  C_  ( card `  T ) )
373, 31, 36syl2anc 661 . . . . . . 7  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  om  C_  ( card `  T ) )
38 cardidm 8357 . . . . . . 7  |-  ( card `  ( card `  T
) )  =  (
card `  T )
39 cardaleph 8487 . . . . . . 7  |-  ( ( om  C_  ( card `  T )  /\  ( card `  ( card `  T
) )  =  (
card `  T )
)  ->  ( card `  T )  =  (
aleph `  |^| { x  e.  On  |  ( card `  T )  C_  ( aleph `  x ) } ) )
4037, 38, 39sylancl 662 . . . . . 6  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  ( card `  T )  =  ( aleph `  |^| { x  e.  On  |  ( card `  T )  C_  ( aleph `  x ) } ) )
4140fveq2d 5876 . . . . . . 7  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  ( cf `  ( card `  T
) )  =  ( cf `  ( aleph ` 
|^| { x  e.  On  |  ( card `  T
)  C_  ( aleph `  x ) } ) ) )
4240, 41oveq12d 6314 . . . . . 6  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  (
( card `  T )  ^m  ( cf `  ( card `  T ) ) )  =  ( (
aleph `  |^| { x  e.  On  |  ( card `  T )  C_  ( aleph `  x ) } )  ^m  ( cf `  ( aleph `  |^| { x  e.  On  |  ( card `  T )  C_  ( aleph `  x ) } ) ) ) )
4340, 42breq12d 4469 . . . . 5  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  (
( card `  T )  ~<  ( ( card `  T
)  ^m  ( cf `  ( card `  T
) ) )  <->  ( aleph ` 
|^| { x  e.  On  |  ( card `  T
)  C_  ( aleph `  x ) } ) 
~<  ( ( aleph `  |^| { x  e.  On  | 
( card `  T )  C_  ( aleph `  x ) } )  ^m  ( cf `  ( aleph `  |^| { x  e.  On  | 
( card `  T )  C_  ( aleph `  x ) } ) ) ) ) )
445, 43mpbiri 233 . . . 4  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  ( card `  T )  ~< 
( ( card `  T
)  ^m  ( cf `  ( card `  T
) ) ) )
45 simp1 996 . . . . . . . . . . . 12  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )  /\  x  e.  (
( card `  T )  ^m  ( cf `  ( card `  T ) ) ) )  ->  T  e.  Tarski )
46 simp3 998 . . . . . . . . . . . . 13  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )  /\  x  e.  (
( card `  T )  ^m  ( cf `  ( card `  T ) ) ) )  ->  x  e.  ( ( card `  T
)  ^m  ( cf `  ( card `  T
) ) ) )
47 fvex 5882 . . . . . . . . . . . . . . . 16  |-  ( card `  T )  e.  _V
48 fvex 5882 . . . . . . . . . . . . . . . 16  |-  ( cf `  ( card `  T
) )  e.  _V
4947, 48elmap 7466 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( card `  T )  ^m  ( cf `  ( card `  T
) ) )  <->  x :
( cf `  ( card `  T ) ) --> ( card `  T
) )
50 fssxp 5749 . . . . . . . . . . . . . . 15  |-  ( x : ( cf `  ( card `  T ) ) --> ( card `  T
)  ->  x  C_  (
( cf `  ( card `  T ) )  X.  ( card `  T
) ) )
5149, 50sylbi 195 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( card `  T )  ^m  ( cf `  ( card `  T
) ) )  ->  x  C_  ( ( cf `  ( card `  T
) )  X.  ( card `  T ) ) )
5216ex 434 . . . . . . . . . . . . . . . 16  |-  ( T  e.  Tarski  ->  ( x  e.  ( card `  T
)  ->  x  e.  T ) )
5352ssrdv 3505 . . . . . . . . . . . . . . 15  |-  ( T  e.  Tarski  ->  ( card `  T
)  C_  T )
54 cfle 8651 . . . . . . . . . . . . . . . . 17  |-  ( cf `  ( card `  T
) )  C_  ( card `  T )
55 sstr 3507 . . . . . . . . . . . . . . . . 17  |-  ( ( ( cf `  ( card `  T ) ) 
C_  ( card `  T
)  /\  ( card `  T )  C_  T
)  ->  ( cf `  ( card `  T
) )  C_  T
)
5654, 55mpan 670 . . . . . . . . . . . . . . . 16  |-  ( (
card `  T )  C_  T  ->  ( cf `  ( card `  T
) )  C_  T
)
57 tskxpss 9167 . . . . . . . . . . . . . . . . . 18  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  C_  T  /\  ( card `  T
)  C_  T )  ->  ( ( cf `  ( card `  T ) )  X.  ( card `  T
) )  C_  T
)
58573exp 1195 . . . . . . . . . . . . . . . . 17  |-  ( T  e.  Tarski  ->  ( ( cf `  ( card `  T
) )  C_  T  ->  ( ( card `  T
)  C_  T  ->  ( ( cf `  ( card `  T ) )  X.  ( card `  T
) )  C_  T
) ) )
5958com23 78 . . . . . . . . . . . . . . . 16  |-  ( T  e.  Tarski  ->  ( ( card `  T )  C_  T  ->  ( ( cf `  ( card `  T ) ) 
C_  T  ->  (
( cf `  ( card `  T ) )  X.  ( card `  T
) )  C_  T
) ) )
6056, 59mpdi 42 . . . . . . . . . . . . . . 15  |-  ( T  e.  Tarski  ->  ( ( card `  T )  C_  T  ->  ( ( cf `  ( card `  T ) )  X.  ( card `  T
) )  C_  T
) )
6153, 60mpd 15 . . . . . . . . . . . . . 14  |-  ( T  e.  Tarski  ->  ( ( cf `  ( card `  T
) )  X.  ( card `  T ) ) 
C_  T )
62 sstr2 3506 . . . . . . . . . . . . . 14  |-  ( x 
C_  ( ( cf `  ( card `  T
) )  X.  ( card `  T ) )  ->  ( ( ( cf `  ( card `  T ) )  X.  ( card `  T
) )  C_  T  ->  x  C_  T )
)
6351, 61, 62syl2im 38 . . . . . . . . . . . . 13  |-  ( x  e.  ( ( card `  T )  ^m  ( cf `  ( card `  T
) ) )  -> 
( T  e.  Tarski  ->  x  C_  T ) )
6446, 45, 63sylc 60 . . . . . . . . . . . 12  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )  /\  x  e.  (
( card `  T )  ^m  ( cf `  ( card `  T ) ) ) )  ->  x  C_  T )
65 simp2 997 . . . . . . . . . . . . 13  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )  /\  x  e.  (
( card `  T )  ^m  ( cf `  ( card `  T ) ) ) )  ->  ( cf `  ( card `  T
) )  e.  (
card `  T )
)
66 ffn 5737 . . . . . . . . . . . . . . . . 17  |-  ( x : ( cf `  ( card `  T ) ) --> ( card `  T
)  ->  x  Fn  ( cf `  ( card `  T ) ) )
67 fndmeng 7611 . . . . . . . . . . . . . . . . 17  |-  ( ( x  Fn  ( cf `  ( card `  T
) )  /\  ( cf `  ( card `  T
) )  e.  _V )  ->  ( cf `  ( card `  T ) ) 
~~  x )
6866, 48, 67sylancl 662 . . . . . . . . . . . . . . . 16  |-  ( x : ( cf `  ( card `  T ) ) --> ( card `  T
)  ->  ( cf `  ( card `  T
) )  ~~  x
)
6949, 68sylbi 195 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( card `  T )  ^m  ( cf `  ( card `  T
) ) )  -> 
( cf `  ( card `  T ) ) 
~~  x )
7069ensymd 7585 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( card `  T )  ^m  ( cf `  ( card `  T
) ) )  ->  x  ~~  ( cf `  ( card `  T ) ) )
71 cardsdomelir 8371 . . . . . . . . . . . . . 14  |-  ( ( cf `  ( card `  T ) )  e.  ( card `  T
)  ->  ( cf `  ( card `  T
) )  ~<  T )
72 ensdomtr 7672 . . . . . . . . . . . . . 14  |-  ( ( x  ~~  ( cf `  ( card `  T
) )  /\  ( cf `  ( card `  T
) )  ~<  T )  ->  x  ~<  T )
7370, 71, 72syl2an 477 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( (
card `  T )  ^m  ( cf `  ( card `  T ) ) )  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )
)  ->  x  ~<  T )
7446, 65, 73syl2anc 661 . . . . . . . . . . . 12  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )  /\  x  e.  (
( card `  T )  ^m  ( cf `  ( card `  T ) ) ) )  ->  x  ~<  T )
75 tskssel 9152 . . . . . . . . . . . 12  |-  ( ( T  e.  Tarski  /\  x  C_  T  /\  x  ~<  T )  ->  x  e.  T )
7645, 64, 74, 75syl3anc 1228 . . . . . . . . . . 11  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )  /\  x  e.  (
( card `  T )  ^m  ( cf `  ( card `  T ) ) ) )  ->  x  e.  T )
77763expia 1198 . . . . . . . . . 10  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )
)  ->  ( x  e.  ( ( card `  T
)  ^m  ( cf `  ( card `  T
) ) )  ->  x  e.  T )
)
7877ssrdv 3505 . . . . . . . . 9  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )
)  ->  ( ( card `  T )  ^m  ( cf `  ( card `  T ) ) ) 
C_  T )
79 ssdomg 7580 . . . . . . . . . 10  |-  ( T  e.  Tarski  ->  ( ( (
card `  T )  ^m  ( cf `  ( card `  T ) ) )  C_  T  ->  ( ( card `  T
)  ^m  ( cf `  ( card `  T
) ) )  ~<_  T ) )
8079imp 429 . . . . . . . . 9  |-  ( ( T  e.  Tarski  /\  (
( card `  T )  ^m  ( cf `  ( card `  T ) ) )  C_  T )  ->  ( ( card `  T
)  ^m  ( cf `  ( card `  T
) ) )  ~<_  T )
8178, 80syldan 470 . . . . . . . 8  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )
)  ->  ( ( card `  T )  ^m  ( cf `  ( card `  T ) ) )  ~<_  T )
8224adantr 465 . . . . . . . 8  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )
)  ->  T  ~~  ( card `  T )
)
83 domentr 7593 . . . . . . . 8  |-  ( ( ( ( card `  T
)  ^m  ( cf `  ( card `  T
) ) )  ~<_  T  /\  T  ~~  ( card `  T ) )  ->  ( ( card `  T )  ^m  ( cf `  ( card `  T
) ) )  ~<_  (
card `  T )
)
8481, 82, 83syl2anc 661 . . . . . . 7  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )
)  ->  ( ( card `  T )  ^m  ( cf `  ( card `  T ) ) )  ~<_  ( card `  T
) )
85 domnsym 7662 . . . . . . 7  |-  ( ( ( card `  T
)  ^m  ( cf `  ( card `  T
) ) )  ~<_  (
card `  T )  ->  -.  ( card `  T
)  ~<  ( ( card `  T )  ^m  ( cf `  ( card `  T
) ) ) )
8684, 85syl 16 . . . . . 6  |-  ( ( T  e.  Tarski  /\  ( cf `  ( card `  T
) )  e.  (
card `  T )
)  ->  -.  ( card `  T )  ~< 
( ( card `  T
)  ^m  ( cf `  ( card `  T
) ) ) )
8786ex 434 . . . . 5  |-  ( T  e.  Tarski  ->  ( ( cf `  ( card `  T
) )  e.  (
card `  T )  ->  -.  ( card `  T
)  ~<  ( ( card `  T )  ^m  ( cf `  ( card `  T
) ) ) ) )
8887adantr 465 . . . 4  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  (
( cf `  ( card `  T ) )  e.  ( card `  T
)  ->  -.  ( card `  T )  ~< 
( ( card `  T
)  ^m  ( cf `  ( card `  T
) ) ) ) )
8944, 88mt2d 117 . . 3  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  -.  ( cf `  ( card `  T ) )  e.  ( card `  T
) )
90 cfon 8652 . . . . . 6  |-  ( cf `  ( card `  T
) )  e.  On
9190, 10onsseli 5001 . . . . 5  |-  ( ( cf `  ( card `  T ) )  C_  ( card `  T )  <->  ( ( cf `  ( card `  T ) )  e.  ( card `  T
)  \/  ( cf `  ( card `  T
) )  =  (
card `  T )
) )
9254, 91mpbi 208 . . . 4  |-  ( ( cf `  ( card `  T ) )  e.  ( card `  T
)  \/  ( cf `  ( card `  T
) )  =  (
card `  T )
)
9392ori 375 . . 3  |-  ( -.  ( cf `  ( card `  T ) )  e.  ( card `  T
)  ->  ( cf `  ( card `  T
) )  =  (
card `  T )
)
9489, 93syl 16 . 2  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  ( cf `  ( card `  T
) )  =  (
card `  T )
)
95 elina 9082 . 2  |-  ( (
card `  T )  e.  Inacc 
<->  ( ( card `  T
)  =/=  (/)  /\  ( cf `  ( card `  T
) )  =  (
card `  T )  /\  A. x  e.  (
card `  T ) ~P x  ~<  ( card `  T ) ) )
963, 94, 31, 95syl3anbrc 1180 1  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  ( card `  T )  e. 
Inacc )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   E.wrex 2808   {crab 2811   _Vcvv 3109    C_ wss 3471   (/)c0 3793   ~Pcpw 4015   |^|cint 4288   class class class wbr 4456    |-> cmpt 4515   Oncon0 4887    X. cxp 5006    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6296   omcom 6699    ^m cmap 7438    ~~ cen 7532    ~<_ cdom 7533    ~< csdm 7534  harchar 8000   cardccrd 8333   alephcale 8334   cfccf 8335   Inacccina 9078   Tarskictsk 9143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-ac2 8860
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-smo 7035  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-oi 7953  df-har 8002  df-r1 8199  df-card 8337  df-aleph 8338  df-cf 8339  df-acn 8340  df-ac 8514  df-ina 9080  df-tsk 9144
This theorem is referenced by:  r1tskina  9177  tskuni  9178  inaprc  9231
  Copyright terms: Public domain W3C validator