Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  telfsumo2 Structured version   Visualization version   GIF version

Theorem telfsumo2 14376
 Description: Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
telfsumo.1 (𝑘 = 𝑗𝐴 = 𝐵)
telfsumo.2 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
telfsumo.3 (𝑘 = 𝑀𝐴 = 𝐷)
telfsumo.4 (𝑘 = 𝑁𝐴 = 𝐸)
telfsumo.5 (𝜑𝑁 ∈ (ℤ𝑀))
telfsumo.6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
telfsumo2 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶𝐵) = (𝐸𝐷))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑘   𝐶,𝑘   𝑗,𝑘,𝑀   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘   𝐷,𝑘   𝑘,𝐸
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑗)   𝐶(𝑗)   𝐷(𝑗)   𝐸(𝑗)

Proof of Theorem telfsumo2
StepHypRef Expression
1 telfsumo.1 . . . 4 (𝑘 = 𝑗𝐴 = 𝐵)
21negeqd 10154 . . 3 (𝑘 = 𝑗 → -𝐴 = -𝐵)
3 telfsumo.2 . . . 4 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
43negeqd 10154 . . 3 (𝑘 = (𝑗 + 1) → -𝐴 = -𝐶)
5 telfsumo.3 . . . 4 (𝑘 = 𝑀𝐴 = 𝐷)
65negeqd 10154 . . 3 (𝑘 = 𝑀 → -𝐴 = -𝐷)
7 telfsumo.4 . . . 4 (𝑘 = 𝑁𝐴 = 𝐸)
87negeqd 10154 . . 3 (𝑘 = 𝑁 → -𝐴 = -𝐸)
9 telfsumo.5 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
10 telfsumo.6 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
1110negcld 10258 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → -𝐴 ∈ ℂ)
122, 4, 6, 8, 9, 11telfsumo 14375 . 2 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(-𝐵 − -𝐶) = (-𝐷 − -𝐸))
1310ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
14 elfzofz 12354 . . . . 5 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁))
151eleq1d 2672 . . . . . 6 (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
1615rspccva 3281 . . . . 5 ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)
1713, 14, 16syl2an 493 . . . 4 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐵 ∈ ℂ)
18 fzofzp1 12431 . . . . 5 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁))
193eleq1d 2672 . . . . . 6 (𝑘 = (𝑗 + 1) → (𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ))
2019rspccva 3281 . . . . 5 ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ (𝑗 + 1) ∈ (𝑀...𝑁)) → 𝐶 ∈ ℂ)
2113, 18, 20syl2an 493 . . . 4 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐶 ∈ ℂ)
2217, 21neg2subd 10288 . . 3 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (-𝐵 − -𝐶) = (𝐶𝐵))
2322sumeq2dv 14281 . 2 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(-𝐵 − -𝐶) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐶𝐵))
24 eluzfz1 12219 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
259, 24syl 17 . . . 4 (𝜑𝑀 ∈ (𝑀...𝑁))
265eleq1d 2672 . . . . 5 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ))
2726rspcv 3278 . . . 4 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → 𝐷 ∈ ℂ))
2825, 13, 27sylc 63 . . 3 (𝜑𝐷 ∈ ℂ)
29 eluzfz2 12220 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
309, 29syl 17 . . . 4 (𝜑𝑁 ∈ (𝑀...𝑁))
317eleq1d 2672 . . . . 5 (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ))
3231rspcv 3278 . . . 4 (𝑁 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ → 𝐸 ∈ ℂ))
3330, 13, 32sylc 63 . . 3 (𝜑𝐸 ∈ ℂ)
3428, 33neg2subd 10288 . 2 (𝜑 → (-𝐷 − -𝐸) = (𝐸𝐷))
3512, 23, 343eqtr3d 2652 1 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶𝐵) = (𝐸𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  1c1 9816   + caddc 9818   − cmin 10145  -cneg 10146  ℤ≥cuz 11563  ...cfz 12197  ..^cfzo 12334  Σcsu 14264 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265 This theorem is referenced by:  telfsum2  14378  dvfsumle  23588  dvfsumabs  23590  advlogexp  24201
 Copyright terms: Public domain W3C validator