Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumss2 Structured version   Visualization version   GIF version

Theorem sumss2 14304
 Description: Change the index set of a sum by adding zeroes. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
Assertion
Ref Expression
sumss2 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ (𝐵 ⊆ (ℤ𝑀) ∨ 𝐵 ∈ Fin)) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hints:   𝐶(𝑘)   𝑀(𝑘)

Proof of Theorem sumss2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simpll 786 . . . 4 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) → 𝐴𝐵)
2 simplr 788 . . . . 5 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) → ∀𝑘𝐴 𝐶 ∈ ℂ)
3 iftrue 4042 . . . . . . 7 (𝑚𝐴 → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
43adantl 481 . . . . . 6 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 𝑚 / 𝑘𝐶)
5 nfcsb1v 3515 . . . . . . . . 9 𝑘𝑚 / 𝑘𝐶
65nfel1 2765 . . . . . . . 8 𝑘𝑚 / 𝑘𝐶 ∈ ℂ
7 csbeq1a 3508 . . . . . . . . 9 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
87eleq1d 2672 . . . . . . . 8 (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝐶 ∈ ℂ))
96, 8rspc 3276 . . . . . . 7 (𝑚𝐴 → (∀𝑘𝐴 𝐶 ∈ ℂ → 𝑚 / 𝑘𝐶 ∈ ℂ))
109impcom 445 . . . . . 6 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐶 ∈ ℂ)
114, 10eqeltrd 2688 . . . . 5 ((∀𝑘𝐴 𝐶 ∈ ℂ ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
122, 11sylan 487 . . . 4 ((((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
13 eldifn 3695 . . . . . 6 (𝑚 ∈ (𝐵𝐴) → ¬ 𝑚𝐴)
1413iffalsed 4047 . . . . 5 (𝑚 ∈ (𝐵𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
1514adantl 481 . . . 4 ((((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) ∧ 𝑚 ∈ (𝐵𝐴)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
16 simpr 476 . . . 4 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) → 𝐵 ⊆ (ℤ𝑀))
171, 12, 15, 16sumss 14302 . . 3 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ⊆ (ℤ𝑀)) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
18 simpll 786 . . . 4 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) → 𝐴𝐵)
19 simplr 788 . . . . 5 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) → ∀𝑘𝐴 𝐶 ∈ ℂ)
2019, 11sylan 487 . . . 4 ((((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) ∧ 𝑚𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) ∈ ℂ)
2114adantl 481 . . . 4 ((((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) ∧ 𝑚 ∈ (𝐵𝐴)) → if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = 0)
22 simpr 476 . . . 4 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) → 𝐵 ∈ Fin)
2318, 20, 21, 22fsumss 14303 . . 3 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ 𝐵 ∈ Fin) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
2417, 23jaodan 822 . 2 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ (𝐵 ⊆ (ℤ𝑀) ∨ 𝐵 ∈ Fin)) → Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
25 iftrue 4042 . . . 4 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
2625sumeq2i 14277 . . 3 Σ𝑘𝐴 if(𝑘𝐴, 𝐶, 0) = Σ𝑘𝐴 𝐶
27 nfcv 2751 . . . 4 𝑚if(𝑘𝐴, 𝐶, 0)
28 nfv 1830 . . . . 5 𝑘 𝑚𝐴
29 nfcv 2751 . . . . 5 𝑘0
3028, 5, 29nfif 4065 . . . 4 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
31 eleq1 2676 . . . . 5 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
3231, 7ifbieq1d 4059 . . . 4 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐶, 0) = if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0))
3327, 30, 32cbvsumi 14275 . . 3 Σ𝑘𝐴 if(𝑘𝐴, 𝐶, 0) = Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
3426, 33eqtr3i 2634 . 2 Σ𝑘𝐴 𝐶 = Σ𝑚𝐴 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
3527, 30, 32cbvsumi 14275 . 2 Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0) = Σ𝑚𝐵 if(𝑚𝐴, 𝑚 / 𝑘𝐶, 0)
3624, 34, 353eqtr4g 2669 1 (((𝐴𝐵 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ (𝐵 ⊆ (ℤ𝑀) ∨ 𝐵 ∈ Fin)) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ⦋csb 3499   ∖ cdif 3537   ⊆ wss 3540  ifcif 4036  ‘cfv 5804  Fincfn 7841  ℂcc 9813  0cc0 9815  ℤ≥cuz 11563  Σcsu 14264 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265 This theorem is referenced by:  fsumsplit  14318  sumsplit  14341  isumless  14416  rpnnen2lem11  14792  sumhash  15438  prmrec  15464  plyeq0lem  23770  prmorcht  24704  musumsum  24718  pclogsum  24740  dchrhash  24796  rpvmasum2  25001  pntlemj  25092  plymulx0  29950
 Copyright terms: Public domain W3C validator