Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmorcht Structured version   Visualization version   GIF version

Theorem prmorcht 24704
 Description: Relate the primorial (product of the first 𝑛 primes) to the Chebyshev function. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
prmorcht.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
Assertion
Ref Expression
prmorcht (𝐴 ∈ ℕ → (exp‘(θ‘𝐴)) = (seq1( · , 𝐹)‘𝐴))

Proof of Theorem prmorcht
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnre 10904 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2 chtval 24636 . . . . . . 7 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘))
31, 2syl 17 . . . . . 6 (𝐴 ∈ ℕ → (θ‘𝐴) = Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘))
4 2eluzge1 11610 . . . . . . . . . 10 2 ∈ (ℤ‘1)
5 ppisval2 24631 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ‘1)) → ((0[,]𝐴) ∩ ℙ) = ((1...(⌊‘𝐴)) ∩ ℙ))
61, 4, 5sylancl 693 . . . . . . . . 9 (𝐴 ∈ ℕ → ((0[,]𝐴) ∩ ℙ) = ((1...(⌊‘𝐴)) ∩ ℙ))
7 nnz 11276 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
8 flid 12471 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
97, 8syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (⌊‘𝐴) = 𝐴)
109oveq2d 6565 . . . . . . . . . 10 (𝐴 ∈ ℕ → (1...(⌊‘𝐴)) = (1...𝐴))
1110ineq1d 3775 . . . . . . . . 9 (𝐴 ∈ ℕ → ((1...(⌊‘𝐴)) ∩ ℙ) = ((1...𝐴) ∩ ℙ))
126, 11eqtrd 2644 . . . . . . . 8 (𝐴 ∈ ℕ → ((0[,]𝐴) ∩ ℙ) = ((1...𝐴) ∩ ℙ))
1312sumeq1d 14279 . . . . . . 7 (𝐴 ∈ ℕ → Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘))
14 inss1 3795 . . . . . . . 8 ((1...𝐴) ∩ ℙ) ⊆ (1...𝐴)
1514sseli 3564 . . . . . . . . . 10 (𝑘 ∈ ((1...𝐴) ∩ ℙ) → 𝑘 ∈ (1...𝐴))
16 elfznn 12241 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℕ)
1716adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℕ)
1817nnrpd 11746 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℝ+)
1918relogcld 24173 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (log‘𝑘) ∈ ℝ)
2019recnd 9947 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (log‘𝑘) ∈ ℂ)
2115, 20sylan2 490 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ ((1...𝐴) ∩ ℙ)) → (log‘𝑘) ∈ ℂ)
2221ralrimiva 2949 . . . . . . . 8 (𝐴 ∈ ℕ → ∀𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) ∈ ℂ)
23 fzfi 12633 . . . . . . . . . 10 (1...𝐴) ∈ Fin
2423olci 405 . . . . . . . . 9 ((1...𝐴) ⊆ (ℤ‘1) ∨ (1...𝐴) ∈ Fin)
25 sumss2 14304 . . . . . . . . 9 (((((1...𝐴) ∩ ℙ) ⊆ (1...𝐴) ∧ ∀𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) ∈ ℂ) ∧ ((1...𝐴) ⊆ (ℤ‘1) ∨ (1...𝐴) ∈ Fin)) → Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
2624, 25mpan2 703 . . . . . . . 8 ((((1...𝐴) ∩ ℙ) ⊆ (1...𝐴) ∧ ∀𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) ∈ ℂ) → Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
2714, 22, 26sylancr 694 . . . . . . 7 (𝐴 ∈ ℕ → Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
2813, 27eqtrd 2644 . . . . . 6 (𝐴 ∈ ℕ → Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
293, 28eqtrd 2644 . . . . 5 (𝐴 ∈ ℕ → (θ‘𝐴) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
30 elin 3758 . . . . . . . 8 (𝑘 ∈ ((1...𝐴) ∩ ℙ) ↔ (𝑘 ∈ (1...𝐴) ∧ 𝑘 ∈ ℙ))
3130baibr 943 . . . . . . 7 (𝑘 ∈ (1...𝐴) → (𝑘 ∈ ℙ ↔ 𝑘 ∈ ((1...𝐴) ∩ ℙ)))
3231ifbid 4058 . . . . . 6 (𝑘 ∈ (1...𝐴) → if(𝑘 ∈ ℙ, (log‘𝑘), 0) = if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
3332sumeq2i 14277 . . . . 5 Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ℙ, (log‘𝑘), 0) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0)
3429, 33syl6eqr 2662 . . . 4 (𝐴 ∈ ℕ → (θ‘𝐴) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ℙ, (log‘𝑘), 0))
35 eleq1 2676 . . . . . . . 8 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
36 fveq2 6103 . . . . . . . 8 (𝑛 = 𝑘 → (log‘𝑛) = (log‘𝑘))
3735, 36ifbieq1d 4059 . . . . . . 7 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, (log‘𝑛), 0) = if(𝑘 ∈ ℙ, (log‘𝑘), 0))
38 eqid 2610 . . . . . . 7 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))
39 fvex 6113 . . . . . . . 8 (log‘𝑘) ∈ V
40 0cn 9911 . . . . . . . . 9 0 ∈ ℂ
4140elexi 3186 . . . . . . . 8 0 ∈ V
4239, 41ifex 4106 . . . . . . 7 if(𝑘 ∈ ℙ, (log‘𝑘), 0) ∈ V
4337, 38, 42fvmpt 6191 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) = if(𝑘 ∈ ℙ, (log‘𝑘), 0))
4417, 43syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) = if(𝑘 ∈ ℙ, (log‘𝑘), 0))
45 elnnuz 11600 . . . . . 6 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (ℤ‘1))
4645biimpi 205 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ‘1))
47 ifcl 4080 . . . . . 6 (((log‘𝑘) ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘 ∈ ℙ, (log‘𝑘), 0) ∈ ℂ)
4820, 40, 47sylancl 693 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → if(𝑘 ∈ ℙ, (log‘𝑘), 0) ∈ ℂ)
4944, 46, 48fsumser 14308 . . . 4 (𝐴 ∈ ℕ → Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ℙ, (log‘𝑘), 0) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)))‘𝐴))
5034, 49eqtrd 2644 . . 3 (𝐴 ∈ ℕ → (θ‘𝐴) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)))‘𝐴))
5150fveq2d 6107 . 2 (𝐴 ∈ ℕ → (exp‘(θ‘𝐴)) = (exp‘(seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)))‘𝐴)))
52 addcl 9897 . . . 4 ((𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ) → (𝑘 + 𝑝) ∈ ℂ)
5352adantl 481 . . 3 ((𝐴 ∈ ℕ ∧ (𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ)) → (𝑘 + 𝑝) ∈ ℂ)
5444, 48eqeltrd 2688 . . 3 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) ∈ ℂ)
55 efadd 14663 . . . 4 ((𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ) → (exp‘(𝑘 + 𝑝)) = ((exp‘𝑘) · (exp‘𝑝)))
5655adantl 481 . . 3 ((𝐴 ∈ ℕ ∧ (𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ)) → (exp‘(𝑘 + 𝑝)) = ((exp‘𝑘) · (exp‘𝑝)))
57 1nn 10908 . . . . . . 7 1 ∈ ℕ
58 ifcl 4080 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 1 ∈ ℕ) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
5917, 57, 58sylancl 693 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
6059nnrpd 11746 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℝ+)
6160reeflogd 24174 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (exp‘(log‘if(𝑘 ∈ ℙ, 𝑘, 1))) = if(𝑘 ∈ ℙ, 𝑘, 1))
62 fvif 6114 . . . . . . 7 (log‘if(𝑘 ∈ ℙ, 𝑘, 1)) = if(𝑘 ∈ ℙ, (log‘𝑘), (log‘1))
63 log1 24136 . . . . . . . 8 (log‘1) = 0
64 ifeq2 4041 . . . . . . . 8 ((log‘1) = 0 → if(𝑘 ∈ ℙ, (log‘𝑘), (log‘1)) = if(𝑘 ∈ ℙ, (log‘𝑘), 0))
6563, 64ax-mp 5 . . . . . . 7 if(𝑘 ∈ ℙ, (log‘𝑘), (log‘1)) = if(𝑘 ∈ ℙ, (log‘𝑘), 0)
6662, 65eqtri 2632 . . . . . 6 (log‘if(𝑘 ∈ ℙ, 𝑘, 1)) = if(𝑘 ∈ ℙ, (log‘𝑘), 0)
6744, 66syl6eqr 2662 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) = (log‘if(𝑘 ∈ ℙ, 𝑘, 1)))
6867fveq2d 6107 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (exp‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘)) = (exp‘(log‘if(𝑘 ∈ ℙ, 𝑘, 1))))
69 id 22 . . . . . . 7 (𝑛 = 𝑘𝑛 = 𝑘)
7035, 69ifbieq1d 4059 . . . . . 6 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, 𝑛, 1) = if(𝑘 ∈ ℙ, 𝑘, 1))
71 prmorcht.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
72 vex 3176 . . . . . . 7 𝑘 ∈ V
7357elexi 3186 . . . . . . 7 1 ∈ V
7472, 73ifex 4106 . . . . . 6 if(𝑘 ∈ ℙ, 𝑘, 1) ∈ V
7570, 71, 74fvmpt 6191 . . . . 5 (𝑘 ∈ ℕ → (𝐹𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1))
7617, 75syl 17 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (𝐹𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1))
7761, 68, 763eqtr4d 2654 . . 3 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (exp‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘)) = (𝐹𝑘))
7853, 54, 46, 56, 77seqhomo 12710 . 2 (𝐴 ∈ ℕ → (exp‘(seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)))‘𝐴)) = (seq1( · , 𝐹)‘𝐴))
7951, 78eqtrd 2644 1 (𝐴 ∈ ℕ → (exp‘(θ‘𝐴)) = (seq1( · , 𝐹)‘𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896   ∩ cin 3539   ⊆ wss 3540  ifcif 4036   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  ℕcn 10897  2c2 10947  ℤcz 11254  ℤ≥cuz 11563  [,]cicc 12049  ...cfz 12197  ⌊cfl 12453  seqcseq 12663  Σcsu 14264  expce 14631  ℙcprime 15223  logclog 24105  θccht 24617 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-prm 15224  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cht 24623 This theorem is referenced by:  chtublem  24736  bposlem6  24814
 Copyright terms: Public domain W3C validator