MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem11 Structured version   Visualization version   GIF version

Theorem rpnnen2lem11 14792
Description: Lemma for rpnnen2 14794. (Contributed by Mario Carneiro, 13-May-2013.)
Hypotheses
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
rpnnen2.2 (𝜑𝐴 ⊆ ℕ)
rpnnen2.3 (𝜑𝐵 ⊆ ℕ)
rpnnen2.4 (𝜑𝑚 ∈ (𝐴𝐵))
rpnnen2.5 (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)))
rpnnen2.6 (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘))
Assertion
Ref Expression
rpnnen2lem11 (𝜑 → ¬ 𝜓)
Distinct variable groups:   𝑚,𝑛,𝑥,𝑘   𝐴,𝑘,𝑛,𝑥   𝐵,𝑘,𝑛,𝑥   𝑘,𝑚,𝐹   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝜓(𝑥,𝑘,𝑚,𝑛)   𝐴(𝑚)   𝐵(𝑚)   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem11
StepHypRef Expression
1 rpnnen2.3 . . . 4 (𝜑𝐵 ⊆ ℕ)
2 rpnnen2.2 . . . . 5 (𝜑𝐴 ⊆ ℕ)
3 rpnnen2.4 . . . . 5 (𝜑𝑚 ∈ (𝐴𝐵))
4 eldifi 3694 . . . . . 6 (𝑚 ∈ (𝐴𝐵) → 𝑚𝐴)
5 ssel2 3563 . . . . . 6 ((𝐴 ⊆ ℕ ∧ 𝑚𝐴) → 𝑚 ∈ ℕ)
64, 5sylan2 490 . . . . 5 ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ (𝐴𝐵)) → 𝑚 ∈ ℕ)
72, 3, 6syl2anc 691 . . . 4 (𝜑𝑚 ∈ ℕ)
8 rpnnen2.1 . . . . 5 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
98rpnnen2lem6 14787 . . . 4 ((𝐵 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ∈ ℝ)
101, 7, 9syl2anc 691 . . 3 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ∈ ℝ)
11 3nn 11063 . . . . . 6 3 ∈ ℕ
12 nnrecre 10934 . . . . . 6 (3 ∈ ℕ → (1 / 3) ∈ ℝ)
1311, 12ax-mp 5 . . . . 5 (1 / 3) ∈ ℝ
147nnnn0d 11228 . . . . 5 (𝜑𝑚 ∈ ℕ0)
15 reexpcl 12739 . . . . 5 (((1 / 3) ∈ ℝ ∧ 𝑚 ∈ ℕ0) → ((1 / 3)↑𝑚) ∈ ℝ)
1613, 14, 15sylancr 694 . . . 4 (𝜑 → ((1 / 3)↑𝑚) ∈ ℝ)
178rpnnen2lem6 14787 . . . . 5 ((𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ∈ ℝ)
182, 7, 17syl2anc 691 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ∈ ℝ)
19 nnrp 11718 . . . . . . . . 9 (3 ∈ ℕ → 3 ∈ ℝ+)
20 rpreccl 11733 . . . . . . . . 9 (3 ∈ ℝ+ → (1 / 3) ∈ ℝ+)
2111, 19, 20mp2b 10 . . . . . . . 8 (1 / 3) ∈ ℝ+
227nnzd 11357 . . . . . . . 8 (𝜑𝑚 ∈ ℤ)
23 rpexpcl 12741 . . . . . . . 8 (((1 / 3) ∈ ℝ+𝑚 ∈ ℤ) → ((1 / 3)↑𝑚) ∈ ℝ+)
2421, 22, 23sylancr 694 . . . . . . 7 (𝜑 → ((1 / 3)↑𝑚) ∈ ℝ+)
2524rpred 11748 . . . . . 6 (𝜑 → ((1 / 3)↑𝑚) ∈ ℝ)
2625rehalfcld 11156 . . . . 5 (𝜑 → (((1 / 3)↑𝑚) / 2) ∈ ℝ)
273snssd 4281 . . . . . . . . 9 (𝜑 → {𝑚} ⊆ (𝐴𝐵))
282ssdifd 3708 . . . . . . . . 9 (𝜑 → (𝐴𝐵) ⊆ (ℕ ∖ 𝐵))
2927, 28sstrd 3578 . . . . . . . 8 (𝜑 → {𝑚} ⊆ (ℕ ∖ 𝐵))
307snssd 4281 . . . . . . . . 9 (𝜑 → {𝑚} ⊆ ℕ)
31 ssconb 3705 . . . . . . . . 9 ((𝐵 ⊆ ℕ ∧ {𝑚} ⊆ ℕ) → (𝐵 ⊆ (ℕ ∖ {𝑚}) ↔ {𝑚} ⊆ (ℕ ∖ 𝐵)))
321, 30, 31syl2anc 691 . . . . . . . 8 (𝜑 → (𝐵 ⊆ (ℕ ∖ {𝑚}) ↔ {𝑚} ⊆ (ℕ ∖ 𝐵)))
3329, 32mpbird 246 . . . . . . 7 (𝜑𝐵 ⊆ (ℕ ∖ {𝑚}))
34 difssd 3700 . . . . . . 7 (𝜑 → (ℕ ∖ {𝑚}) ⊆ ℕ)
358rpnnen2lem7 14788 . . . . . . 7 ((𝐵 ⊆ (ℕ ∖ {𝑚}) ∧ (ℕ ∖ {𝑚}) ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ≤ Σ𝑘 ∈ (ℤ𝑚)((𝐹‘(ℕ ∖ {𝑚}))‘𝑘))
3633, 34, 7, 35syl3anc 1318 . . . . . 6 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ≤ Σ𝑘 ∈ (ℤ𝑚)((𝐹‘(ℕ ∖ {𝑚}))‘𝑘))
378rpnnen2lem9 14790 . . . . . . . 8 (𝑚 ∈ ℕ → Σ𝑘 ∈ (ℤ𝑚)((𝐹‘(ℕ ∖ {𝑚}))‘𝑘) = (0 + (((1 / 3)↑(𝑚 + 1)) / (1 − (1 / 3)))))
387, 37syl 17 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹‘(ℕ ∖ {𝑚}))‘𝑘) = (0 + (((1 / 3)↑(𝑚 + 1)) / (1 − (1 / 3)))))
3913recni 9931 . . . . . . . . . . . 12 (1 / 3) ∈ ℂ
40 expp1 12729 . . . . . . . . . . . 12 (((1 / 3) ∈ ℂ ∧ 𝑚 ∈ ℕ0) → ((1 / 3)↑(𝑚 + 1)) = (((1 / 3)↑𝑚) · (1 / 3)))
4139, 14, 40sylancr 694 . . . . . . . . . . 11 (𝜑 → ((1 / 3)↑(𝑚 + 1)) = (((1 / 3)↑𝑚) · (1 / 3)))
4225recnd 9947 . . . . . . . . . . . 12 (𝜑 → ((1 / 3)↑𝑚) ∈ ℂ)
43 3cn 10972 . . . . . . . . . . . . 13 3 ∈ ℂ
44 3ne0 10992 . . . . . . . . . . . . 13 3 ≠ 0
45 divrec 10580 . . . . . . . . . . . . 13 ((((1 / 3)↑𝑚) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → (((1 / 3)↑𝑚) / 3) = (((1 / 3)↑𝑚) · (1 / 3)))
4643, 44, 45mp3an23 1408 . . . . . . . . . . . 12 (((1 / 3)↑𝑚) ∈ ℂ → (((1 / 3)↑𝑚) / 3) = (((1 / 3)↑𝑚) · (1 / 3)))
4742, 46syl 17 . . . . . . . . . . 11 (𝜑 → (((1 / 3)↑𝑚) / 3) = (((1 / 3)↑𝑚) · (1 / 3)))
4841, 47eqtr4d 2647 . . . . . . . . . 10 (𝜑 → ((1 / 3)↑(𝑚 + 1)) = (((1 / 3)↑𝑚) / 3))
4948oveq1d 6564 . . . . . . . . 9 (𝜑 → (((1 / 3)↑(𝑚 + 1)) / (1 − (1 / 3))) = ((((1 / 3)↑𝑚) / 3) / (1 − (1 / 3))))
50 ax-1cn 9873 . . . . . . . . . . . . 13 1 ∈ ℂ
5143, 44pm3.2i 470 . . . . . . . . . . . . 13 (3 ∈ ℂ ∧ 3 ≠ 0)
52 divsubdir 10600 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3)))
5343, 50, 51, 52mp3an 1416 . . . . . . . . . . . 12 ((3 − 1) / 3) = ((3 / 3) − (1 / 3))
54 3m1e2 11014 . . . . . . . . . . . . 13 (3 − 1) = 2
5554oveq1i 6559 . . . . . . . . . . . 12 ((3 − 1) / 3) = (2 / 3)
5643, 44dividi 10637 . . . . . . . . . . . . 13 (3 / 3) = 1
5756oveq1i 6559 . . . . . . . . . . . 12 ((3 / 3) − (1 / 3)) = (1 − (1 / 3))
5853, 55, 573eqtr3ri 2641 . . . . . . . . . . 11 (1 − (1 / 3)) = (2 / 3)
5958oveq2i 6560 . . . . . . . . . 10 ((((1 / 3)↑𝑚) / 3) / (1 − (1 / 3))) = ((((1 / 3)↑𝑚) / 3) / (2 / 3))
60 2cnne0 11119 . . . . . . . . . . . 12 (2 ∈ ℂ ∧ 2 ≠ 0)
61 divcan7 10613 . . . . . . . . . . . 12 ((((1 / 3)↑𝑚) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((((1 / 3)↑𝑚) / 3) / (2 / 3)) = (((1 / 3)↑𝑚) / 2))
6260, 51, 61mp3an23 1408 . . . . . . . . . . 11 (((1 / 3)↑𝑚) ∈ ℂ → ((((1 / 3)↑𝑚) / 3) / (2 / 3)) = (((1 / 3)↑𝑚) / 2))
6342, 62syl 17 . . . . . . . . . 10 (𝜑 → ((((1 / 3)↑𝑚) / 3) / (2 / 3)) = (((1 / 3)↑𝑚) / 2))
6459, 63syl5eq 2656 . . . . . . . . 9 (𝜑 → ((((1 / 3)↑𝑚) / 3) / (1 − (1 / 3))) = (((1 / 3)↑𝑚) / 2))
6549, 64eqtrd 2644 . . . . . . . 8 (𝜑 → (((1 / 3)↑(𝑚 + 1)) / (1 − (1 / 3))) = (((1 / 3)↑𝑚) / 2))
6665oveq2d 6565 . . . . . . 7 (𝜑 → (0 + (((1 / 3)↑(𝑚 + 1)) / (1 − (1 / 3)))) = (0 + (((1 / 3)↑𝑚) / 2)))
6726recnd 9947 . . . . . . . 8 (𝜑 → (((1 / 3)↑𝑚) / 2) ∈ ℂ)
6867addid2d 10116 . . . . . . 7 (𝜑 → (0 + (((1 / 3)↑𝑚) / 2)) = (((1 / 3)↑𝑚) / 2))
6938, 66, 683eqtrd 2648 . . . . . 6 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹‘(ℕ ∖ {𝑚}))‘𝑘) = (((1 / 3)↑𝑚) / 2))
7036, 69breqtrd 4609 . . . . 5 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) ≤ (((1 / 3)↑𝑚) / 2))
71 rphalflt 11736 . . . . . 6 (((1 / 3)↑𝑚) ∈ ℝ+ → (((1 / 3)↑𝑚) / 2) < ((1 / 3)↑𝑚))
7224, 71syl 17 . . . . 5 (𝜑 → (((1 / 3)↑𝑚) / 2) < ((1 / 3)↑𝑚))
7310, 26, 25, 70, 72lelttrd 10074 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) < ((1 / 3)↑𝑚))
74 eluznn 11634 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑚)) → 𝑘 ∈ ℕ)
757, 74sylan 487 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑚)) → 𝑘 ∈ ℕ)
768rpnnen2lem1 14782 . . . . . . . . 9 (({𝑚} ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘{𝑚})‘𝑘) = if(𝑘 ∈ {𝑚}, ((1 / 3)↑𝑘), 0))
7730, 76sylan 487 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘{𝑚})‘𝑘) = if(𝑘 ∈ {𝑚}, ((1 / 3)↑𝑘), 0))
7875, 77syldan 486 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑚)) → ((𝐹‘{𝑚})‘𝑘) = if(𝑘 ∈ {𝑚}, ((1 / 3)↑𝑘), 0))
7978sumeq2dv 14281 . . . . . 6 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹‘{𝑚})‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)if(𝑘 ∈ {𝑚}, ((1 / 3)↑𝑘), 0))
80 uzid 11578 . . . . . . . . 9 (𝑚 ∈ ℤ → 𝑚 ∈ (ℤ𝑚))
8122, 80syl 17 . . . . . . . 8 (𝜑𝑚 ∈ (ℤ𝑚))
8281snssd 4281 . . . . . . 7 (𝜑 → {𝑚} ⊆ (ℤ𝑚))
83 vex 3176 . . . . . . . . 9 𝑚 ∈ V
84 oveq2 6557 . . . . . . . . . 10 (𝑘 = 𝑚 → ((1 / 3)↑𝑘) = ((1 / 3)↑𝑚))
8584eleq1d 2672 . . . . . . . . 9 (𝑘 = 𝑚 → (((1 / 3)↑𝑘) ∈ ℂ ↔ ((1 / 3)↑𝑚) ∈ ℂ))
8683, 85ralsn 4169 . . . . . . . 8 (∀𝑘 ∈ {𝑚} ((1 / 3)↑𝑘) ∈ ℂ ↔ ((1 / 3)↑𝑚) ∈ ℂ)
8742, 86sylibr 223 . . . . . . 7 (𝜑 → ∀𝑘 ∈ {𝑚} ((1 / 3)↑𝑘) ∈ ℂ)
88 ssid 3587 . . . . . . . . 9 (ℤ𝑚) ⊆ (ℤ𝑚)
8988a1i 11 . . . . . . . 8 (𝜑 → (ℤ𝑚) ⊆ (ℤ𝑚))
9089orcd 406 . . . . . . 7 (𝜑 → ((ℤ𝑚) ⊆ (ℤ𝑚) ∨ (ℤ𝑚) ∈ Fin))
91 sumss2 14304 . . . . . . 7 ((({𝑚} ⊆ (ℤ𝑚) ∧ ∀𝑘 ∈ {𝑚} ((1 / 3)↑𝑘) ∈ ℂ) ∧ ((ℤ𝑚) ⊆ (ℤ𝑚) ∨ (ℤ𝑚) ∈ Fin)) → Σ𝑘 ∈ {𝑚} ((1 / 3)↑𝑘) = Σ𝑘 ∈ (ℤ𝑚)if(𝑘 ∈ {𝑚}, ((1 / 3)↑𝑘), 0))
9282, 87, 90, 91syl21anc 1317 . . . . . 6 (𝜑 → Σ𝑘 ∈ {𝑚} ((1 / 3)↑𝑘) = Σ𝑘 ∈ (ℤ𝑚)if(𝑘 ∈ {𝑚}, ((1 / 3)↑𝑘), 0))
9384sumsn 14319 . . . . . . 7 ((𝑚 ∈ ℕ ∧ ((1 / 3)↑𝑚) ∈ ℂ) → Σ𝑘 ∈ {𝑚} ((1 / 3)↑𝑘) = ((1 / 3)↑𝑚))
947, 42, 93syl2anc 691 . . . . . 6 (𝜑 → Σ𝑘 ∈ {𝑚} ((1 / 3)↑𝑘) = ((1 / 3)↑𝑚))
9579, 92, 943eqtr2d 2650 . . . . 5 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹‘{𝑚})‘𝑘) = ((1 / 3)↑𝑚))
963, 4syl 17 . . . . . . 7 (𝜑𝑚𝐴)
9796snssd 4281 . . . . . 6 (𝜑 → {𝑚} ⊆ 𝐴)
988rpnnen2lem7 14788 . . . . . 6 (({𝑚} ⊆ 𝐴𝐴 ⊆ ℕ ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ𝑚)((𝐹‘{𝑚})‘𝑘) ≤ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘))
9997, 2, 7, 98syl3anc 1318 . . . . 5 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹‘{𝑚})‘𝑘) ≤ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘))
10095, 99eqbrtrrd 4607 . . . 4 (𝜑 → ((1 / 3)↑𝑚) ≤ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘))
10110, 16, 18, 73, 100ltletrd 10076 . . 3 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) < Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘))
10210, 101gtned 10051 . 2 (𝜑 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ≠ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘))
103 rpnnen2.5 . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝐴𝑛𝐵)))
104 rpnnen2.6 . . . . 5 (𝜓 ↔ Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝐵)‘𝑘))
1058, 2, 1, 3, 103, 104rpnnen2lem10 14791 . . . 4 ((𝜑𝜓) → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘))
106105ex 449 . . 3 (𝜑 → (𝜓 → Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) = Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘)))
107106necon3ad 2795 . 2 (𝜑 → (Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐴)‘𝑘) ≠ Σ𝑘 ∈ (ℤ𝑚)((𝐹𝐵)‘𝑘) → ¬ 𝜓))
108102, 107mpd 15 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  cdif 3537  wss 3540  ifcif 4036  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  3c3 10948  0cn0 11169  cz 11254  cuz 11563  +crp 11708  cexp 12722  Σcsu 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265
This theorem is referenced by:  rpnnen2lem12  14793
  Copyright terms: Public domain W3C validator