MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  musumsum Structured version   Visualization version   GIF version

Theorem musumsum 24718
Description: Evaluate a collapsing sum over the Möbius function. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
musumsum.1 (𝑚 = 1 → 𝐵 = 𝐶)
musumsum.2 (𝜑𝐴 ∈ Fin)
musumsum.3 (𝜑𝐴 ⊆ ℕ)
musumsum.4 (𝜑 → 1 ∈ 𝐴)
musumsum.5 ((𝜑𝑚𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
musumsum (𝜑 → Σ𝑚𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = 𝐶)
Distinct variable groups:   𝑘,𝑚,𝐴   𝑘,𝑛,𝑚   𝜑,𝑘,𝑚   𝐵,𝑘   𝐶,𝑚
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑚,𝑛)   𝐶(𝑘,𝑛)

Proof of Theorem musumsum
StepHypRef Expression
1 musumsum.3 . . . . . . 7 (𝜑𝐴 ⊆ ℕ)
21sselda 3568 . . . . . 6 ((𝜑𝑚𝐴) → 𝑚 ∈ ℕ)
3 musum 24717 . . . . . 6 (𝑚 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} (μ‘𝑘) = if(𝑚 = 1, 1, 0))
42, 3syl 17 . . . . 5 ((𝜑𝑚𝐴) → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} (μ‘𝑘) = if(𝑚 = 1, 1, 0))
54oveq1d 6564 . . . 4 ((𝜑𝑚𝐴) → (Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} (μ‘𝑘) · 𝐵) = (if(𝑚 = 1, 1, 0) · 𝐵))
6 fzfid 12634 . . . . . 6 ((𝜑𝑚𝐴) → (1...𝑚) ∈ Fin)
7 dvdsssfz1 14878 . . . . . . 7 (𝑚 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑚} ⊆ (1...𝑚))
82, 7syl 17 . . . . . 6 ((𝜑𝑚𝐴) → {𝑛 ∈ ℕ ∣ 𝑛𝑚} ⊆ (1...𝑚))
9 ssfi 8065 . . . . . 6 (((1...𝑚) ∈ Fin ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ⊆ (1...𝑚)) → {𝑛 ∈ ℕ ∣ 𝑛𝑚} ∈ Fin)
106, 8, 9syl2anc 691 . . . . 5 ((𝜑𝑚𝐴) → {𝑛 ∈ ℕ ∣ 𝑛𝑚} ∈ Fin)
11 musumsum.5 . . . . 5 ((𝜑𝑚𝐴) → 𝐵 ∈ ℂ)
12 elrabi 3328 . . . . . . . 8 (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} → 𝑘 ∈ ℕ)
13 mucl 24667 . . . . . . . 8 (𝑘 ∈ ℕ → (μ‘𝑘) ∈ ℤ)
1412, 13syl 17 . . . . . . 7 (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} → (μ‘𝑘) ∈ ℤ)
1514zcnd 11359 . . . . . 6 (𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} → (μ‘𝑘) ∈ ℂ)
1615adantl 481 . . . . 5 (((𝜑𝑚𝐴) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚}) → (μ‘𝑘) ∈ ℂ)
1710, 11, 16fsummulc1 14359 . . . 4 ((𝜑𝑚𝐴) → (Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} (μ‘𝑘) · 𝐵) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵))
18 ovif 6635 . . . . 5 (if(𝑚 = 1, 1, 0) · 𝐵) = if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵))
19 velsn 4141 . . . . . . . . 9 (𝑚 ∈ {1} ↔ 𝑚 = 1)
2019bicomi 213 . . . . . . . 8 (𝑚 = 1 ↔ 𝑚 ∈ {1})
2120a1i 11 . . . . . . 7 (𝐵 ∈ ℂ → (𝑚 = 1 ↔ 𝑚 ∈ {1}))
22 mulid2 9917 . . . . . . 7 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
23 mul02 10093 . . . . . . 7 (𝐵 ∈ ℂ → (0 · 𝐵) = 0)
2421, 22, 23ifbieq12d 4063 . . . . . 6 (𝐵 ∈ ℂ → if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) = if(𝑚 ∈ {1}, 𝐵, 0))
2511, 24syl 17 . . . . 5 ((𝜑𝑚𝐴) → if(𝑚 = 1, (1 · 𝐵), (0 · 𝐵)) = if(𝑚 ∈ {1}, 𝐵, 0))
2618, 25syl5eq 2656 . . . 4 ((𝜑𝑚𝐴) → (if(𝑚 = 1, 1, 0) · 𝐵) = if(𝑚 ∈ {1}, 𝐵, 0))
275, 17, 263eqtr3d 2652 . . 3 ((𝜑𝑚𝐴) → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = if(𝑚 ∈ {1}, 𝐵, 0))
2827sumeq2dv 14281 . 2 (𝜑 → Σ𝑚𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = Σ𝑚𝐴 if(𝑚 ∈ {1}, 𝐵, 0))
29 musumsum.4 . . . 4 (𝜑 → 1 ∈ 𝐴)
3029snssd 4281 . . 3 (𝜑 → {1} ⊆ 𝐴)
3130sselda 3568 . . . . 5 ((𝜑𝑚 ∈ {1}) → 𝑚𝐴)
3231, 11syldan 486 . . . 4 ((𝜑𝑚 ∈ {1}) → 𝐵 ∈ ℂ)
3332ralrimiva 2949 . . 3 (𝜑 → ∀𝑚 ∈ {1}𝐵 ∈ ℂ)
34 musumsum.2 . . . 4 (𝜑𝐴 ∈ Fin)
3534olcd 407 . . 3 (𝜑 → (𝐴 ⊆ (ℤ‘1) ∨ 𝐴 ∈ Fin))
36 sumss2 14304 . . 3 ((({1} ⊆ 𝐴 ∧ ∀𝑚 ∈ {1}𝐵 ∈ ℂ) ∧ (𝐴 ⊆ (ℤ‘1) ∨ 𝐴 ∈ Fin)) → Σ𝑚 ∈ {1}𝐵 = Σ𝑚𝐴 if(𝑚 ∈ {1}, 𝐵, 0))
3730, 33, 35, 36syl21anc 1317 . 2 (𝜑 → Σ𝑚 ∈ {1}𝐵 = Σ𝑚𝐴 if(𝑚 ∈ {1}, 𝐵, 0))
3811ralrimiva 2949 . . . 4 (𝜑 → ∀𝑚𝐴 𝐵 ∈ ℂ)
39 musumsum.1 . . . . . 6 (𝑚 = 1 → 𝐵 = 𝐶)
4039eleq1d 2672 . . . . 5 (𝑚 = 1 → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
4140rspcv 3278 . . . 4 (1 ∈ 𝐴 → (∀𝑚𝐴 𝐵 ∈ ℂ → 𝐶 ∈ ℂ))
4229, 38, 41sylc 63 . . 3 (𝜑𝐶 ∈ ℂ)
4339sumsn 14319 . . 3 ((1 ∈ 𝐴𝐶 ∈ ℂ) → Σ𝑚 ∈ {1}𝐵 = 𝐶)
4429, 42, 43syl2anc 691 . 2 (𝜑 → Σ𝑚 ∈ {1}𝐵 = 𝐶)
4528, 37, 443eqtr2d 2650 1 (𝜑 → Σ𝑚𝐴 Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑚} ((μ‘𝑘) · 𝐵) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  wss 3540  ifcif 4036  {csn 4125   class class class wbr 4583  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  0cc0 9815  1c1 9816   · cmul 9820  cn 10897  cz 11254  cuz 11563  ...cfz 12197  Σcsu 14264  cdvds 14821  μcmu 24621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380  df-mu 24627
This theorem is referenced by:  dchrmusum2  24983  dchrvmasum2lem  24985  mudivsum  25019  mulogsum  25021  mulog2sumlem2  25024
  Copyright terms: Public domain W3C validator