Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem24 Structured version   Visualization version   GIF version

Theorem stoweidlem24 38917
Description: This lemma proves that for 𝑛 sufficiently large, qn( t ) > ( 1 - epsilon ), for all 𝑡 in 𝑉: see Lemma 1 [BrosowskiDeutsh] p. 90, (at the bottom of page 90). 𝑄 is used to represent qn in the paper, 𝑁 to represent 𝑛 in the paper, 𝐾 to represent 𝑘, 𝐷 to represent δ, and 𝐸 to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem24.1 𝑉 = {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
stoweidlem24.2 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
stoweidlem24.3 (𝜑𝑃:𝑇⟶ℝ)
stoweidlem24.4 (𝜑𝑁 ∈ ℕ0)
stoweidlem24.5 (𝜑𝐾 ∈ ℕ0)
stoweidlem24.6 (𝜑𝐷 ∈ ℝ+)
stoweidlem24.8 (𝜑𝐸 ∈ ℝ+)
stoweidlem24.9 (𝜑 → (1 − 𝐸) < (1 − (((𝐾 · 𝐷) / 2)↑𝑁)))
stoweidlem24.10 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
Assertion
Ref Expression
stoweidlem24 ((𝜑𝑡𝑉) → (1 − 𝐸) < (𝑄𝑡))
Distinct variable group:   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝐷(𝑡)   𝑃(𝑡)   𝑄(𝑡)   𝐸(𝑡)   𝐾(𝑡)   𝑁(𝑡)   𝑉(𝑡)

Proof of Theorem stoweidlem24
StepHypRef Expression
1 1red 9934 . . . 4 ((𝜑𝑡𝑉) → 1 ∈ ℝ)
2 stoweidlem24.8 . . . . . 6 (𝜑𝐸 ∈ ℝ+)
32rpred 11748 . . . . 5 (𝜑𝐸 ∈ ℝ)
43adantr 480 . . . 4 ((𝜑𝑡𝑉) → 𝐸 ∈ ℝ)
51, 4resubcld 10337 . . 3 ((𝜑𝑡𝑉) → (1 − 𝐸) ∈ ℝ)
6 stoweidlem24.5 . . . . . . . 8 (𝜑𝐾 ∈ ℕ0)
76nn0red 11229 . . . . . . 7 (𝜑𝐾 ∈ ℝ)
87adantr 480 . . . . . 6 ((𝜑𝑡𝑉) → 𝐾 ∈ ℝ)
9 stoweidlem24.3 . . . . . . . 8 (𝜑𝑃:𝑇⟶ℝ)
109adantr 480 . . . . . . 7 ((𝜑𝑡𝑉) → 𝑃:𝑇⟶ℝ)
11 stoweidlem24.1 . . . . . . . . . 10 𝑉 = {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
1211rabeq2i 3170 . . . . . . . . 9 (𝑡𝑉 ↔ (𝑡𝑇 ∧ (𝑃𝑡) < (𝐷 / 2)))
1312simplbi 475 . . . . . . . 8 (𝑡𝑉𝑡𝑇)
1413adantl 481 . . . . . . 7 ((𝜑𝑡𝑉) → 𝑡𝑇)
1510, 14ffvelrnd 6268 . . . . . 6 ((𝜑𝑡𝑉) → (𝑃𝑡) ∈ ℝ)
168, 15remulcld 9949 . . . . 5 ((𝜑𝑡𝑉) → (𝐾 · (𝑃𝑡)) ∈ ℝ)
17 stoweidlem24.4 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
1817adantr 480 . . . . 5 ((𝜑𝑡𝑉) → 𝑁 ∈ ℕ0)
1916, 18reexpcld 12887 . . . 4 ((𝜑𝑡𝑉) → ((𝐾 · (𝑃𝑡))↑𝑁) ∈ ℝ)
201, 19resubcld 10337 . . 3 ((𝜑𝑡𝑉) → (1 − ((𝐾 · (𝑃𝑡))↑𝑁)) ∈ ℝ)
2115, 18reexpcld 12887 . . . . 5 ((𝜑𝑡𝑉) → ((𝑃𝑡)↑𝑁) ∈ ℝ)
221, 21resubcld 10337 . . . 4 ((𝜑𝑡𝑉) → (1 − ((𝑃𝑡)↑𝑁)) ∈ ℝ)
236, 17jca 553 . . . . . 6 (𝜑 → (𝐾 ∈ ℕ0𝑁 ∈ ℕ0))
2423adantr 480 . . . . 5 ((𝜑𝑡𝑉) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ0))
25 nn0expcl 12736 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾𝑁) ∈ ℕ0)
2624, 25syl 17 . . . 4 ((𝜑𝑡𝑉) → (𝐾𝑁) ∈ ℕ0)
2722, 26reexpcld 12887 . . 3 ((𝜑𝑡𝑉) → ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)) ∈ ℝ)
28 1red 9934 . . . . . 6 (𝜑 → 1 ∈ ℝ)
29 stoweidlem24.6 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ+)
3029rpred 11748 . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
317, 30remulcld 9949 . . . . . . . 8 (𝜑 → (𝐾 · 𝐷) ∈ ℝ)
3231rehalfcld 11156 . . . . . . 7 (𝜑 → ((𝐾 · 𝐷) / 2) ∈ ℝ)
3332, 17reexpcld 12887 . . . . . 6 (𝜑 → (((𝐾 · 𝐷) / 2)↑𝑁) ∈ ℝ)
3428, 33resubcld 10337 . . . . 5 (𝜑 → (1 − (((𝐾 · 𝐷) / 2)↑𝑁)) ∈ ℝ)
3534adantr 480 . . . 4 ((𝜑𝑡𝑉) → (1 − (((𝐾 · 𝐷) / 2)↑𝑁)) ∈ ℝ)
36 stoweidlem24.9 . . . . 5 (𝜑 → (1 − 𝐸) < (1 − (((𝐾 · 𝐷) / 2)↑𝑁)))
3736adantr 480 . . . 4 ((𝜑𝑡𝑉) → (1 − 𝐸) < (1 − (((𝐾 · 𝐷) / 2)↑𝑁)))
3833adantr 480 . . . . 5 ((𝜑𝑡𝑉) → (((𝐾 · 𝐷) / 2)↑𝑁) ∈ ℝ)
3932adantr 480 . . . . . 6 ((𝜑𝑡𝑉) → ((𝐾 · 𝐷) / 2) ∈ ℝ)
406nn0ge0d 11231 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐾)
417, 40jca 553 . . . . . . . 8 (𝜑 → (𝐾 ∈ ℝ ∧ 0 ≤ 𝐾))
4241adantr 480 . . . . . . 7 ((𝜑𝑡𝑉) → (𝐾 ∈ ℝ ∧ 0 ≤ 𝐾))
43 stoweidlem24.10 . . . . . . . . . 10 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
4443r19.21bi 2916 . . . . . . . . 9 ((𝜑𝑡𝑇) → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
4544simpld 474 . . . . . . . 8 ((𝜑𝑡𝑇) → 0 ≤ (𝑃𝑡))
4613, 45sylan2 490 . . . . . . 7 ((𝜑𝑡𝑉) → 0 ≤ (𝑃𝑡))
47 mulge0 10425 . . . . . . 7 (((𝐾 ∈ ℝ ∧ 0 ≤ 𝐾) ∧ ((𝑃𝑡) ∈ ℝ ∧ 0 ≤ (𝑃𝑡))) → 0 ≤ (𝐾 · (𝑃𝑡)))
4842, 15, 46, 47syl12anc 1316 . . . . . 6 ((𝜑𝑡𝑉) → 0 ≤ (𝐾 · (𝑃𝑡)))
4930rehalfcld 11156 . . . . . . . . 9 (𝜑 → (𝐷 / 2) ∈ ℝ)
5049adantr 480 . . . . . . . 8 ((𝜑𝑡𝑉) → (𝐷 / 2) ∈ ℝ)
5112simprbi 479 . . . . . . . . . 10 (𝑡𝑉 → (𝑃𝑡) < (𝐷 / 2))
5251adantl 481 . . . . . . . . 9 ((𝜑𝑡𝑉) → (𝑃𝑡) < (𝐷 / 2))
5315, 50, 52ltled 10064 . . . . . . . 8 ((𝜑𝑡𝑉) → (𝑃𝑡) ≤ (𝐷 / 2))
54 lemul2a 10757 . . . . . . . 8 ((((𝑃𝑡) ∈ ℝ ∧ (𝐷 / 2) ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 ≤ 𝐾)) ∧ (𝑃𝑡) ≤ (𝐷 / 2)) → (𝐾 · (𝑃𝑡)) ≤ (𝐾 · (𝐷 / 2)))
5515, 50, 42, 53, 54syl31anc 1321 . . . . . . 7 ((𝜑𝑡𝑉) → (𝐾 · (𝑃𝑡)) ≤ (𝐾 · (𝐷 / 2)))
566nn0cnd 11230 . . . . . . . . 9 (𝜑𝐾 ∈ ℂ)
5756adantr 480 . . . . . . . 8 ((𝜑𝑡𝑉) → 𝐾 ∈ ℂ)
5829rpcnd 11750 . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
5958adantr 480 . . . . . . . 8 ((𝜑𝑡𝑉) → 𝐷 ∈ ℂ)
60 2cnne0 11119 . . . . . . . . 9 (2 ∈ ℂ ∧ 2 ≠ 0)
6160a1i 11 . . . . . . . 8 ((𝜑𝑡𝑉) → (2 ∈ ℂ ∧ 2 ≠ 0))
62 divass 10582 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝐾 · 𝐷) / 2) = (𝐾 · (𝐷 / 2)))
6357, 59, 61, 62syl3anc 1318 . . . . . . 7 ((𝜑𝑡𝑉) → ((𝐾 · 𝐷) / 2) = (𝐾 · (𝐷 / 2)))
6455, 63breqtrrd 4611 . . . . . 6 ((𝜑𝑡𝑉) → (𝐾 · (𝑃𝑡)) ≤ ((𝐾 · 𝐷) / 2))
65 leexp1a 12781 . . . . . 6 ((((𝐾 · (𝑃𝑡)) ∈ ℝ ∧ ((𝐾 · 𝐷) / 2) ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ (𝐾 · (𝑃𝑡)) ∧ (𝐾 · (𝑃𝑡)) ≤ ((𝐾 · 𝐷) / 2))) → ((𝐾 · (𝑃𝑡))↑𝑁) ≤ (((𝐾 · 𝐷) / 2)↑𝑁))
6616, 39, 18, 48, 64, 65syl32anc 1326 . . . . 5 ((𝜑𝑡𝑉) → ((𝐾 · (𝑃𝑡))↑𝑁) ≤ (((𝐾 · 𝐷) / 2)↑𝑁))
6719, 38, 1, 66lesub2dd 10523 . . . 4 ((𝜑𝑡𝑉) → (1 − (((𝐾 · 𝐷) / 2)↑𝑁)) ≤ (1 − ((𝐾 · (𝑃𝑡))↑𝑁)))
685, 35, 20, 37, 67ltletrd 10076 . . 3 ((𝜑𝑡𝑉) → (1 − 𝐸) < (1 − ((𝐾 · (𝑃𝑡))↑𝑁)))
6915recnd 9947 . . . . . . 7 ((𝜑𝑡𝑉) → (𝑃𝑡) ∈ ℂ)
7057, 69, 18mulexpd 12885 . . . . . 6 ((𝜑𝑡𝑉) → ((𝐾 · (𝑃𝑡))↑𝑁) = ((𝐾𝑁) · ((𝑃𝑡)↑𝑁)))
7170eqcomd 2616 . . . . 5 ((𝜑𝑡𝑉) → ((𝐾𝑁) · ((𝑃𝑡)↑𝑁)) = ((𝐾 · (𝑃𝑡))↑𝑁))
7271oveq2d 6565 . . . 4 ((𝜑𝑡𝑉) → (1 − ((𝐾𝑁) · ((𝑃𝑡)↑𝑁))) = (1 − ((𝐾 · (𝑃𝑡))↑𝑁)))
7313, 44sylan2 490 . . . . . . 7 ((𝜑𝑡𝑉) → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
7473simprd 478 . . . . . 6 ((𝜑𝑡𝑉) → (𝑃𝑡) ≤ 1)
75 exple1 12782 . . . . . 6 ((((𝑃𝑡) ∈ ℝ ∧ 0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) ∧ 𝑁 ∈ ℕ0) → ((𝑃𝑡)↑𝑁) ≤ 1)
7615, 46, 74, 18, 75syl31anc 1321 . . . . 5 ((𝜑𝑡𝑉) → ((𝑃𝑡)↑𝑁) ≤ 1)
77 stoweidlem10 38903 . . . . 5 ((((𝑃𝑡)↑𝑁) ∈ ℝ ∧ (𝐾𝑁) ∈ ℕ0 ∧ ((𝑃𝑡)↑𝑁) ≤ 1) → (1 − ((𝐾𝑁) · ((𝑃𝑡)↑𝑁))) ≤ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
7821, 26, 76, 77syl3anc 1318 . . . 4 ((𝜑𝑡𝑉) → (1 − ((𝐾𝑁) · ((𝑃𝑡)↑𝑁))) ≤ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
7972, 78eqbrtrrd 4607 . . 3 ((𝜑𝑡𝑉) → (1 − ((𝐾 · (𝑃𝑡))↑𝑁)) ≤ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
805, 20, 27, 68, 79ltletrd 10076 . 2 ((𝜑𝑡𝑉) → (1 − 𝐸) < ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
81 stoweidlem24.2 . . . 4 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
8281, 9, 17, 6stoweidlem12 38905 . . 3 ((𝜑𝑡𝑇) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
8313, 82sylan2 490 . 2 ((𝜑𝑡𝑉) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
8480, 83breqtrrd 4611 1 ((𝜑𝑡𝑉) → (1 − 𝐸) < (𝑄𝑡))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  {crab 2900   class class class wbr 4583  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  2c2 10947  0cn0 11169  +crp 11708  cexp 12722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723
This theorem is referenced by:  stoweidlem45  38938
  Copyright terms: Public domain W3C validator