Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem2 Structured version   Visualization version   GIF version

Theorem stirlinglem2 38968
Description: 𝐴 maps to positive reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
stirlinglem2.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
Assertion
Ref Expression
stirlinglem2 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)

Proof of Theorem stirlinglem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 11176 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 faccl 12932 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
3 nnrp 11718 . . . . 5 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℝ+)
41, 2, 33syl 18 . . . 4 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℝ+)
5 2rp 11713 . . . . . . . 8 2 ∈ ℝ+
65a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
7 nnrp 11718 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
86, 7rpmulcld 11764 . . . . . 6 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
98rpsqrtcld 13998 . . . . 5 (𝑁 ∈ ℕ → (√‘(2 · 𝑁)) ∈ ℝ+)
10 epr 14775 . . . . . . . 8 e ∈ ℝ+
1110a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → e ∈ ℝ+)
127, 11rpdivcld 11765 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 / e) ∈ ℝ+)
13 nnz 11276 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1412, 13rpexpcld 12894 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 / e)↑𝑁) ∈ ℝ+)
159, 14rpmulcld 11764 . . . 4 (𝑁 ∈ ℕ → ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)) ∈ ℝ+)
164, 15rpdivcld 11765 . . 3 (𝑁 ∈ ℕ → ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+)
17 stirlinglem2.1 . . . . . 6 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
18 fveq2 6103 . . . . . . . 8 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
19 oveq2 6557 . . . . . . . . . 10 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
2019fveq2d 6107 . . . . . . . . 9 (𝑛 = 𝑘 → (√‘(2 · 𝑛)) = (√‘(2 · 𝑘)))
21 oveq1 6556 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑛 / e) = (𝑘 / e))
22 id 22 . . . . . . . . . 10 (𝑛 = 𝑘𝑛 = 𝑘)
2321, 22oveq12d 6567 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝑛 / e)↑𝑛) = ((𝑘 / e)↑𝑘))
2420, 23oveq12d 6567 . . . . . . . 8 (𝑛 = 𝑘 → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))
2518, 24oveq12d 6567 . . . . . . 7 (𝑛 = 𝑘 → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
2625cbvmptv 4678 . . . . . 6 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
2717, 26eqtri 2632 . . . . 5 𝐴 = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
2827a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝐴 = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))))
29 simpr 476 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → 𝑘 = 𝑁)
3029fveq2d 6107 . . . . 5 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → (!‘𝑘) = (!‘𝑁))
3129oveq2d 6565 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → (2 · 𝑘) = (2 · 𝑁))
3231fveq2d 6107 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → (√‘(2 · 𝑘)) = (√‘(2 · 𝑁)))
3329oveq1d 6564 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → (𝑘 / e) = (𝑁 / e))
3433, 29oveq12d 6567 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → ((𝑘 / e)↑𝑘) = ((𝑁 / e)↑𝑁))
3532, 34oveq12d 6567 . . . . 5 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) = ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)))
3630, 35oveq12d 6567 . . . 4 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
37 simpl 472 . . . 4 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝑁 ∈ ℕ)
38 simpr 476 . . . 4 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+)
3928, 36, 37, 38fvmptd 6197 . . 3 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → (𝐴𝑁) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
4016, 39mpdan 699 . 2 (𝑁 ∈ ℕ → (𝐴𝑁) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
4140, 16eqeltrd 2688 1 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cmpt 4643  cfv 5804  (class class class)co 6549   · cmul 9820   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  +crp 11708  cexp 12722  !cfa 12922  csqrt 13821  eceu 14632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-e 14638
This theorem is referenced by:  stirlinglem4  38970  stirlinglem11  38977  stirlinglem12  38978  stirlinglem13  38979  stirlinglem14  38980
  Copyright terms: Public domain W3C validator