Step | Hyp | Ref
| Expression |
1 | | eqid 2610 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
2 | | smatvscl.a |
. . . . 5
⊢ 𝐴 = (𝑁 Mat 𝑅) |
3 | | eqid 2610 |
. . . . 5
⊢
(Base‘𝐴) =
(Base‘𝐴) |
4 | | eqid 2610 |
. . . . 5
⊢
(1r‘𝐴) = (1r‘𝐴) |
5 | | smatvscl.t |
. . . . 5
⊢ ∗ = (
·𝑠 ‘𝐴) |
6 | | smatvscl.s |
. . . . 5
⊢ 𝑆 = (𝑁 ScMat 𝑅) |
7 | 1, 2, 3, 4, 5, 6 | scmatel 20130 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 ∈ 𝑆 ↔ (𝑋 ∈ (Base‘𝐴) ∧ ∃𝑐 ∈ (Base‘𝑅)𝑋 = (𝑐 ∗
(1r‘𝐴))))) |
8 | | oveq2 6557 |
. . . . . . . . . . 11
⊢ (𝑋 = (𝑐 ∗
(1r‘𝐴))
→ (𝐶 ∗ 𝑋) = (𝐶 ∗ (𝑐 ∗
(1r‘𝐴)))) |
9 | 8 | adantl 481 |
. . . . . . . . . 10
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑋 = (𝑐 ∗
(1r‘𝐴)))
→ (𝐶 ∗ 𝑋) = (𝐶 ∗ (𝑐 ∗
(1r‘𝐴)))) |
10 | 2 | matlmod 20054 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod) |
11 | 10 | ad3antrrr 762 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → 𝐴 ∈ LMod) |
12 | | smatvscl.k |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐾 = (Base‘𝑅) |
13 | 2 | matsca2 20045 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴)) |
14 | 13 | fveq2d 6107 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(Base‘𝑅) =
(Base‘(Scalar‘𝐴))) |
15 | 12, 14 | syl5eq 2656 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐾 =
(Base‘(Scalar‘𝐴))) |
16 | 15 | eleq2d 2673 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐶 ∈ 𝐾 ↔ 𝐶 ∈ (Base‘(Scalar‘𝐴)))) |
17 | 16 | biimpa 500 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶 ∈ 𝐾) → 𝐶 ∈ (Base‘(Scalar‘𝐴))) |
18 | 17 | ad2antrr 758 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → 𝐶 ∈ (Base‘(Scalar‘𝐴))) |
19 | 13 | ad2antrr 758 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) → 𝑅 = (Scalar‘𝐴)) |
20 | 19 | fveq2d 6107 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) → (Base‘𝑅) = (Base‘(Scalar‘𝐴))) |
21 | 20 | eleq2d 2673 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) → (𝑐 ∈ (Base‘𝑅) ↔ 𝑐 ∈ (Base‘(Scalar‘𝐴)))) |
22 | 21 | biimpa 500 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → 𝑐 ∈ (Base‘(Scalar‘𝐴))) |
23 | 2 | matring 20068 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
24 | 3, 4 | ringidcl 18391 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ Ring →
(1r‘𝐴)
∈ (Base‘𝐴)) |
25 | 23, 24 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(1r‘𝐴)
∈ (Base‘𝐴)) |
26 | 25 | ad3antrrr 762 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → (1r‘𝐴) ∈ (Base‘𝐴)) |
27 | | eqid 2610 |
. . . . . . . . . . . . . . 15
⊢
(Scalar‘𝐴) =
(Scalar‘𝐴) |
28 | | eqid 2610 |
. . . . . . . . . . . . . . 15
⊢
(Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)) |
29 | | eqid 2610 |
. . . . . . . . . . . . . . 15
⊢
(.r‘(Scalar‘𝐴)) =
(.r‘(Scalar‘𝐴)) |
30 | 3, 27, 5, 28, 29 | lmodvsass 18711 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ LMod ∧ (𝐶 ∈
(Base‘(Scalar‘𝐴)) ∧ 𝑐 ∈ (Base‘(Scalar‘𝐴)) ∧
(1r‘𝐴)
∈ (Base‘𝐴)))
→ ((𝐶(.r‘(Scalar‘𝐴))𝑐) ∗
(1r‘𝐴)) =
(𝐶 ∗ (𝑐 ∗
(1r‘𝐴)))) |
31 | 11, 18, 22, 26, 30 | syl13anc 1320 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → ((𝐶(.r‘(Scalar‘𝐴))𝑐) ∗
(1r‘𝐴)) =
(𝐶 ∗ (𝑐 ∗
(1r‘𝐴)))) |
32 | 31 | eqcomd 2616 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝐶 ∗ (𝑐 ∗
(1r‘𝐴))) =
((𝐶(.r‘(Scalar‘𝐴))𝑐) ∗
(1r‘𝐴))) |
33 | | simplll 794 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
34 | 13 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶 ∈ 𝐾) → 𝑅 = (Scalar‘𝐴)) |
35 | 34 | eqcomd 2616 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶 ∈ 𝐾) → (Scalar‘𝐴) = 𝑅) |
36 | 35 | ad2antrr 758 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → (Scalar‘𝐴) = 𝑅) |
37 | 36 | fveq2d 6107 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) →
(.r‘(Scalar‘𝐴)) = (.r‘𝑅)) |
38 | 37 | oveqd 6566 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝐶(.r‘(Scalar‘𝐴))𝑐) = (𝐶(.r‘𝑅)𝑐)) |
39 | | simp-4r 803 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) |
40 | | simpllr 795 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → 𝐶 ∈ 𝐾) |
41 | 12 | eqcomi 2619 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Base‘𝑅) =
𝐾 |
42 | 41 | eleq2i 2680 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 ∈ (Base‘𝑅) ↔ 𝑐 ∈ 𝐾) |
43 | 42 | biimpi 205 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 ∈ (Base‘𝑅) → 𝑐 ∈ 𝐾) |
44 | 43 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → 𝑐 ∈ 𝐾) |
45 | | eqid 2610 |
. . . . . . . . . . . . . . . . 17
⊢
(.r‘𝑅) = (.r‘𝑅) |
46 | 12, 45 | ringcl 18384 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝑐 ∈ 𝐾) → (𝐶(.r‘𝑅)𝑐) ∈ 𝐾) |
47 | 39, 40, 44, 46 | syl3anc 1318 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝐶(.r‘𝑅)𝑐) ∈ 𝐾) |
48 | 38, 47 | eqeltrd 2688 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝐶(.r‘(Scalar‘𝐴))𝑐) ∈ 𝐾) |
49 | 12, 2, 3, 5 | matvscl 20056 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝐶(.r‘(Scalar‘𝐴))𝑐) ∈ 𝐾 ∧ (1r‘𝐴) ∈ (Base‘𝐴))) → ((𝐶(.r‘(Scalar‘𝐴))𝑐) ∗
(1r‘𝐴))
∈ (Base‘𝐴)) |
50 | 33, 48, 26, 49 | syl12anc 1316 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → ((𝐶(.r‘(Scalar‘𝐴))𝑐) ∗
(1r‘𝐴))
∈ (Base‘𝐴)) |
51 | | oveq1 6556 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶(.r‘(Scalar‘𝐴))𝑐) = 𝑒 → ((𝐶(.r‘(Scalar‘𝐴))𝑐) ∗
(1r‘𝐴)) =
(𝑒 ∗
(1r‘𝐴))) |
52 | 51 | eqcoms 2618 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = (𝐶(.r‘(Scalar‘𝐴))𝑐) → ((𝐶(.r‘(Scalar‘𝐴))𝑐) ∗
(1r‘𝐴)) =
(𝑒 ∗
(1r‘𝐴))) |
53 | 52 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑒 = (𝐶(.r‘(Scalar‘𝐴))𝑐)) → ((𝐶(.r‘(Scalar‘𝐴))𝑐) ∗
(1r‘𝐴)) =
(𝑒 ∗
(1r‘𝐴))) |
54 | 48, 53 | rspcedeq2vd 3291 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → ∃𝑒 ∈ 𝐾 ((𝐶(.r‘(Scalar‘𝐴))𝑐) ∗
(1r‘𝐴)) =
(𝑒 ∗
(1r‘𝐴))) |
55 | 12, 2, 3, 4, 5, 6 | scmatel 20130 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((𝐶(.r‘(Scalar‘𝐴))𝑐) ∗
(1r‘𝐴))
∈ 𝑆 ↔ (((𝐶(.r‘(Scalar‘𝐴))𝑐) ∗
(1r‘𝐴))
∈ (Base‘𝐴) ∧
∃𝑒 ∈ 𝐾 ((𝐶(.r‘(Scalar‘𝐴))𝑐) ∗
(1r‘𝐴)) =
(𝑒 ∗
(1r‘𝐴))))) |
56 | 55 | ad3antrrr 762 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → (((𝐶(.r‘(Scalar‘𝐴))𝑐) ∗
(1r‘𝐴))
∈ 𝑆 ↔ (((𝐶(.r‘(Scalar‘𝐴))𝑐) ∗
(1r‘𝐴))
∈ (Base‘𝐴) ∧
∃𝑒 ∈ 𝐾 ((𝐶(.r‘(Scalar‘𝐴))𝑐) ∗
(1r‘𝐴)) =
(𝑒 ∗
(1r‘𝐴))))) |
57 | 50, 54, 56 | mpbir2and 959 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → ((𝐶(.r‘(Scalar‘𝐴))𝑐) ∗
(1r‘𝐴))
∈ 𝑆) |
58 | 32, 57 | eqeltrd 2688 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝐶 ∗ (𝑐 ∗
(1r‘𝐴)))
∈ 𝑆) |
59 | 58 | adantr 480 |
. . . . . . . . . 10
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑋 = (𝑐 ∗
(1r‘𝐴)))
→ (𝐶 ∗ (𝑐 ∗
(1r‘𝐴)))
∈ 𝑆) |
60 | 9, 59 | eqeltrd 2688 |
. . . . . . . . 9
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑋 = (𝑐 ∗
(1r‘𝐴)))
→ (𝐶 ∗ 𝑋) ∈ 𝑆) |
61 | 60 | ex 449 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝑋 = (𝑐 ∗
(1r‘𝐴))
→ (𝐶 ∗ 𝑋) ∈ 𝑆)) |
62 | 61 | rexlimdva 3013 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶 ∈ 𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) → (∃𝑐 ∈ (Base‘𝑅)𝑋 = (𝑐 ∗
(1r‘𝐴))
→ (𝐶 ∗ 𝑋) ∈ 𝑆)) |
63 | 62 | expimpd 627 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶 ∈ 𝐾) → ((𝑋 ∈ (Base‘𝐴) ∧ ∃𝑐 ∈ (Base‘𝑅)𝑋 = (𝑐 ∗
(1r‘𝐴)))
→ (𝐶 ∗ 𝑋) ∈ 𝑆)) |
64 | 63 | ex 449 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐶 ∈ 𝐾 → ((𝑋 ∈ (Base‘𝐴) ∧ ∃𝑐 ∈ (Base‘𝑅)𝑋 = (𝑐 ∗
(1r‘𝐴)))
→ (𝐶 ∗ 𝑋) ∈ 𝑆))) |
65 | 64 | com23 84 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑋 ∈ (Base‘𝐴) ∧ ∃𝑐 ∈ (Base‘𝑅)𝑋 = (𝑐 ∗
(1r‘𝐴)))
→ (𝐶 ∈ 𝐾 → (𝐶 ∗ 𝑋) ∈ 𝑆))) |
66 | 7, 65 | sylbid 229 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋 ∈ 𝑆 → (𝐶 ∈ 𝐾 → (𝐶 ∗ 𝑋) ∈ 𝑆))) |
67 | 66 | com23 84 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐶 ∈ 𝐾 → (𝑋 ∈ 𝑆 → (𝐶 ∗ 𝑋) ∈ 𝑆))) |
68 | 67 | imp32 448 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑆)) → (𝐶 ∗ 𝑋) ∈ 𝑆) |