MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smatvscl Structured version   Unicode version

Theorem smatvscl 19196
Description: Closure of the scalar multiplication in the ring of scalar matrices. (matvscl 19103 analog.) (Contributed by AV, 24-Dec-2019.)
Hypotheses
Ref Expression
smatvscl.k  |-  K  =  ( Base `  R
)
smatvscl.a  |-  A  =  ( N Mat  R )
smatvscl.s  |-  S  =  ( N ScMat  R )
smatvscl.t  |-  .*  =  ( .s `  A )
Assertion
Ref Expression
smatvscl  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( C  e.  K  /\  X  e.  S
) )  ->  ( C  .*  X )  e.  S )

Proof of Theorem smatvscl
Dummy variables  c 
e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2454 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
2 smatvscl.a . . . . 5  |-  A  =  ( N Mat  R )
3 eqid 2454 . . . . 5  |-  ( Base `  A )  =  (
Base `  A )
4 eqid 2454 . . . . 5  |-  ( 1r
`  A )  =  ( 1r `  A
)
5 smatvscl.t . . . . 5  |-  .*  =  ( .s `  A )
6 smatvscl.s . . . . 5  |-  S  =  ( N ScMat  R )
71, 2, 3, 4, 5, 6scmatel 19177 . . . 4  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( X  e.  S  <->  ( X  e.  ( Base `  A )  /\  E. c  e.  ( Base `  R ) X  =  ( c  .*  ( 1r `  A ) ) ) ) )
8 oveq2 6278 . . . . . . . . . . 11  |-  ( X  =  ( c  .*  ( 1r `  A
) )  ->  ( C  .*  X )  =  ( C  .*  (
c  .*  ( 1r
`  A ) ) ) )
98adantl 464 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A ) )  /\  c  e.  (
Base `  R )
)  /\  X  =  ( c  .*  ( 1r `  A ) ) )  ->  ( C  .*  X )  =  ( C  .*  ( c  .*  ( 1r `  A ) ) ) )
102matlmod 19101 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  A  e.  LMod )
1110ad3antrrr 727 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  A  e.  LMod )
12 smatvscl.k . . . . . . . . . . . . . . . . . 18  |-  K  =  ( Base `  R
)
132matsca2 19092 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  R  =  (Scalar `  A
) )
1413fveq2d 5852 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( Base `  R )  =  ( Base `  (Scalar `  A ) ) )
1512, 14syl5eq 2507 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  K  =  ( Base `  (Scalar `  A )
) )
1615eleq2d 2524 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( C  e.  K  <->  C  e.  ( Base `  (Scalar `  A ) ) ) )
1716biimpa 482 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K
)  ->  C  e.  ( Base `  (Scalar `  A
) ) )
1817ad2antrr 723 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  C  e.  ( Base `  (Scalar `  A ) ) )
1913ad2antrr 723 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  ->  R  =  (Scalar `  A )
)
2019fveq2d 5852 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  ->  ( Base `  R )  =  ( Base `  (Scalar `  A ) ) )
2120eleq2d 2524 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  ->  (
c  e.  ( Base `  R )  <->  c  e.  ( Base `  (Scalar `  A
) ) ) )
2221biimpa 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  c  e.  ( Base `  (Scalar `  A ) ) )
232matring 19115 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  A  e.  Ring )
243, 4ringidcl 17417 . . . . . . . . . . . . . . . 16  |-  ( A  e.  Ring  ->  ( 1r
`  A )  e.  ( Base `  A
) )
2523, 24syl 16 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( 1r `  A
)  e.  ( Base `  A ) )
2625ad3antrrr 727 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  ( 1r `  A )  e.  ( Base `  A
) )
27 eqid 2454 . . . . . . . . . . . . . . 15  |-  (Scalar `  A )  =  (Scalar `  A )
28 eqid 2454 . . . . . . . . . . . . . . 15  |-  ( Base `  (Scalar `  A )
)  =  ( Base `  (Scalar `  A )
)
29 eqid 2454 . . . . . . . . . . . . . . 15  |-  ( .r
`  (Scalar `  A )
)  =  ( .r
`  (Scalar `  A )
)
303, 27, 5, 28, 29lmodvsass 17735 . . . . . . . . . . . . . 14  |-  ( ( A  e.  LMod  /\  ( C  e.  ( Base `  (Scalar `  A )
)  /\  c  e.  ( Base `  (Scalar `  A
) )  /\  ( 1r `  A )  e.  ( Base `  A
) ) )  -> 
( ( C ( .r `  (Scalar `  A ) ) c )  .*  ( 1r
`  A ) )  =  ( C  .*  ( c  .*  ( 1r `  A ) ) ) )
3111, 18, 22, 26, 30syl13anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  (
( C ( .r
`  (Scalar `  A )
) c )  .*  ( 1r `  A
) )  =  ( C  .*  ( c  .*  ( 1r `  A ) ) ) )
3231eqcomd 2462 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  ( C  .*  ( c  .*  ( 1r `  A
) ) )  =  ( ( C ( .r `  (Scalar `  A ) ) c )  .*  ( 1r
`  A ) ) )
33 simplll 757 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  ( N  e.  Fin  /\  R  e.  Ring ) )
3413adantr 463 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K
)  ->  R  =  (Scalar `  A ) )
3534eqcomd 2462 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K
)  ->  (Scalar `  A
)  =  R )
3635ad2antrr 723 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  (Scalar `  A )  =  R )
3736fveq2d 5852 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  ( .r `  (Scalar `  A
) )  =  ( .r `  R ) )
3837oveqd 6287 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  ( C ( .r `  (Scalar `  A ) ) c )  =  ( C ( .r `  R ) c ) )
39 simp-4r 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  R  e.  Ring )
40 simpllr 758 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  C  e.  K )
4112eqcomi 2467 . . . . . . . . . . . . . . . . . . 19  |-  ( Base `  R )  =  K
4241eleq2i 2532 . . . . . . . . . . . . . . . . . 18  |-  ( c  e.  ( Base `  R
)  <->  c  e.  K
)
4342biimpi 194 . . . . . . . . . . . . . . . . 17  |-  ( c  e.  ( Base `  R
)  ->  c  e.  K )
4443adantl 464 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  c  e.  K )
45 eqid 2454 . . . . . . . . . . . . . . . . 17  |-  ( .r
`  R )  =  ( .r `  R
)
4612, 45ringcl 17410 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  Ring  /\  C  e.  K  /\  c  e.  K )  ->  ( C ( .r `  R ) c )  e.  K )
4739, 40, 44, 46syl3anc 1226 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  ( C ( .r `  R ) c )  e.  K )
4838, 47eqeltrd 2542 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  ( C ( .r `  (Scalar `  A ) ) c )  e.  K
)
4912, 2, 3, 5matvscl 19103 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( ( C ( .r `  (Scalar `  A ) ) c )  e.  K  /\  ( 1r `  A )  e.  ( Base `  A
) ) )  -> 
( ( C ( .r `  (Scalar `  A ) ) c )  .*  ( 1r
`  A ) )  e.  ( Base `  A
) )
5033, 48, 26, 49syl12anc 1224 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  (
( C ( .r
`  (Scalar `  A )
) c )  .*  ( 1r `  A
) )  e.  (
Base `  A )
)
51 oveq1 6277 . . . . . . . . . . . . . . . 16  |-  ( ( C ( .r `  (Scalar `  A ) ) c )  =  e  ->  ( ( C ( .r `  (Scalar `  A ) ) c )  .*  ( 1r
`  A ) )  =  ( e  .*  ( 1r `  A
) ) )
5251eqcoms 2466 . . . . . . . . . . . . . . 15  |-  ( e  =  ( C ( .r `  (Scalar `  A ) ) c )  ->  ( ( C ( .r `  (Scalar `  A ) ) c )  .*  ( 1r `  A ) )  =  ( e  .*  ( 1r `  A
) ) )
5352adantl 464 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A ) )  /\  c  e.  (
Base `  R )
)  /\  e  =  ( C ( .r `  (Scalar `  A ) ) c ) )  -> 
( ( C ( .r `  (Scalar `  A ) ) c )  .*  ( 1r
`  A ) )  =  ( e  .*  ( 1r `  A
) ) )
5448, 53rspcedeq2vd 3214 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  E. e  e.  K  ( ( C ( .r `  (Scalar `  A ) ) c )  .*  ( 1r `  A ) )  =  ( e  .*  ( 1r `  A
) ) )
5512, 2, 3, 4, 5, 6scmatel 19177 . . . . . . . . . . . . . 14  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( ( ( C ( .r `  (Scalar `  A ) ) c )  .*  ( 1r
`  A ) )  e.  S  <->  ( (
( C ( .r
`  (Scalar `  A )
) c )  .*  ( 1r `  A
) )  e.  (
Base `  A )  /\  E. e  e.  K  ( ( C ( .r `  (Scalar `  A ) ) c )  .*  ( 1r
`  A ) )  =  ( e  .*  ( 1r `  A
) ) ) ) )
5655ad3antrrr 727 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  (
( ( C ( .r `  (Scalar `  A ) ) c )  .*  ( 1r
`  A ) )  e.  S  <->  ( (
( C ( .r
`  (Scalar `  A )
) c )  .*  ( 1r `  A
) )  e.  (
Base `  A )  /\  E. e  e.  K  ( ( C ( .r `  (Scalar `  A ) ) c )  .*  ( 1r
`  A ) )  =  ( e  .*  ( 1r `  A
) ) ) ) )
5750, 54, 56mpbir2and 920 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  (
( C ( .r
`  (Scalar `  A )
) c )  .*  ( 1r `  A
) )  e.  S
)
5832, 57eqeltrd 2542 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  ( C  .*  ( c  .*  ( 1r `  A
) ) )  e.  S )
5958adantr 463 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A ) )  /\  c  e.  (
Base `  R )
)  /\  X  =  ( c  .*  ( 1r `  A ) ) )  ->  ( C  .*  ( c  .*  ( 1r `  A ) ) )  e.  S )
609, 59eqeltrd 2542 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A ) )  /\  c  e.  (
Base `  R )
)  /\  X  =  ( c  .*  ( 1r `  A ) ) )  ->  ( C  .*  X )  e.  S
)
6160ex 432 . . . . . . . 8  |-  ( ( ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  /\  c  e.  ( Base `  R
) )  ->  ( X  =  ( c  .*  ( 1r `  A
) )  ->  ( C  .*  X )  e.  S ) )
6261rexlimdva 2946 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  C  e.  K )  /\  X  e.  ( Base `  A
) )  ->  ( E. c  e.  ( Base `  R ) X  =  ( c  .*  ( 1r `  A
) )  ->  ( C  .*  X )  e.  S ) )
6362expimpd 601 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  C  e.  K
)  ->  ( ( X  e.  ( Base `  A )  /\  E. c  e.  ( Base `  R ) X  =  ( c  .*  ( 1r `  A ) ) )  ->  ( C  .*  X )  e.  S
) )
6463ex 432 . . . . 5  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( C  e.  K  ->  ( ( X  e.  ( Base `  A
)  /\  E. c  e.  ( Base `  R
) X  =  ( c  .*  ( 1r
`  A ) ) )  ->  ( C  .*  X )  e.  S
) ) )
6564com23 78 . . . 4  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( ( X  e.  ( Base `  A
)  /\  E. c  e.  ( Base `  R
) X  =  ( c  .*  ( 1r
`  A ) ) )  ->  ( C  e.  K  ->  ( C  .*  X )  e.  S ) ) )
667, 65sylbid 215 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( X  e.  S  ->  ( C  e.  K  ->  ( C  .*  X
)  e.  S ) ) )
6766com23 78 . 2  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( C  e.  K  ->  ( X  e.  S  ->  ( C  .*  X
)  e.  S ) ) )
6867imp32 431 1  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( C  e.  K  /\  X  e.  S
) )  ->  ( C  .*  X )  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   E.wrex 2805   ` cfv 5570  (class class class)co 6270   Fincfn 7509   Basecbs 14719   .rcmulr 14788  Scalarcsca 14790   .scvsca 14791   1rcur 17351   Ringcrg 17396   LModclmod 17710   Mat cmat 19079   ScMat cscmat 19161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-ot 4025  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-sup 7893  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-fz 11676  df-fzo 11800  df-seq 12093  df-hash 12391  df-struct 14721  df-ndx 14722  df-slot 14723  df-base 14724  df-sets 14725  df-ress 14726  df-plusg 14800  df-mulr 14801  df-sca 14803  df-vsca 14804  df-ip 14805  df-tset 14806  df-ple 14807  df-ds 14809  df-hom 14811  df-cco 14812  df-0g 14934  df-gsum 14935  df-prds 14940  df-pws 14942  df-mre 15078  df-mrc 15079  df-acs 15081  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-mhm 16168  df-submnd 16169  df-grp 16259  df-minusg 16260  df-sbg 16261  df-mulg 16262  df-subg 16400  df-ghm 16467  df-cntz 16557  df-cmn 17002  df-abl 17003  df-mgp 17340  df-ur 17352  df-ring 17398  df-subrg 17625  df-lmod 17712  df-lss 17777  df-sra 18016  df-rgmod 18017  df-dsmm 18939  df-frlm 18954  df-mamu 19056  df-mat 19080  df-scmat 19163
This theorem is referenced by:  scmatlss  19197  scmatf  19201
  Copyright terms: Public domain W3C validator