MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqshft2 Structured version   Visualization version   GIF version

Theorem seqshft2 12689
Description: Shifting the index set of a sequence. (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqshft2.1 (𝜑𝑁 ∈ (ℤ𝑀))
seqshft2.2 (𝜑𝐾 ∈ ℤ)
seqshft2.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
Assertion
Ref Expression
seqshft2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝑀   𝜑,𝑘   𝑘,𝑁
Allowed substitution hint:   + (𝑘)

Proof of Theorem seqshft2
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqshft2.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 12220 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 eleq1 2676 . . . . . 6 (𝑥 = 𝑀 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁)))
5 fveq2 6103 . . . . . . 7 (𝑥 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑀))
6 oveq1 6556 . . . . . . . 8 (𝑥 = 𝑀 → (𝑥 + 𝐾) = (𝑀 + 𝐾))
76fveq2d 6107 . . . . . . 7 (𝑥 = 𝑀 → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)))
85, 7eqeq12d 2625 . . . . . 6 (𝑥 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) ↔ (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾))))
94, 8imbi12d 333 . . . . 5 (𝑥 = 𝑀 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾))) ↔ (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)))))
109imbi2d 329 . . . 4 (𝑥 = 𝑀 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾))))))
11 eleq1 2676 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
12 fveq2 6103 . . . . . . 7 (𝑥 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑛))
13 oveq1 6556 . . . . . . . 8 (𝑥 = 𝑛 → (𝑥 + 𝐾) = (𝑛 + 𝐾))
1413fveq2d 6107 . . . . . . 7 (𝑥 = 𝑛 → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)))
1512, 14eqeq12d 2625 . . . . . 6 (𝑥 = 𝑛 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) ↔ (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))))
1611, 15imbi12d 333 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾))) ↔ (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)))))
1716imbi2d 329 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))))))
18 eleq1 2676 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁)))
19 fveq2 6103 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))
20 oveq1 6556 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (𝑥 + 𝐾) = ((𝑛 + 1) + 𝐾))
2120fveq2d 6107 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)))
2219, 21eqeq12d 2625 . . . . . 6 (𝑥 = (𝑛 + 1) → ((seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) ↔ (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾))))
2318, 22imbi12d 333 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾))) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)))))
2423imbi2d 329 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾))))))
25 eleq1 2676 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
26 fveq2 6103 . . . . . . 7 (𝑥 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑁))
27 oveq1 6556 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥 + 𝐾) = (𝑁 + 𝐾))
2827fveq2d 6107 . . . . . . 7 (𝑥 = 𝑁 → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))
2926, 28eqeq12d 2625 . . . . . 6 (𝑥 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))))
3025, 29imbi12d 333 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾))) ↔ (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))))
3130imbi2d 329 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))))))
32 eluzfz1 12219 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
331, 32syl 17 . . . . . . . 8 (𝜑𝑀 ∈ (𝑀...𝑁))
34 seqshft2.3 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
3534ralrimiva 2949 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
36 fveq2 6103 . . . . . . . . . 10 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
37 oveq1 6556 . . . . . . . . . . 11 (𝑘 = 𝑀 → (𝑘 + 𝐾) = (𝑀 + 𝐾))
3837fveq2d 6107 . . . . . . . . . 10 (𝑘 = 𝑀 → (𝐺‘(𝑘 + 𝐾)) = (𝐺‘(𝑀 + 𝐾)))
3936, 38eqeq12d 2625 . . . . . . . . 9 (𝑘 = 𝑀 → ((𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)) ↔ (𝐹𝑀) = (𝐺‘(𝑀 + 𝐾))))
4039rspcv 3278 . . . . . . . 8 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)) → (𝐹𝑀) = (𝐺‘(𝑀 + 𝐾))))
4133, 35, 40sylc 63 . . . . . . 7 (𝜑 → (𝐹𝑀) = (𝐺‘(𝑀 + 𝐾)))
42 eluzel2 11568 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
431, 42syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
44 seq1 12676 . . . . . . . 8 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
4543, 44syl 17 . . . . . . 7 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
46 seqshft2.2 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
4743, 46zaddcld 11362 . . . . . . . 8 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
48 seq1 12676 . . . . . . . 8 ((𝑀 + 𝐾) ∈ ℤ → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)) = (𝐺‘(𝑀 + 𝐾)))
4947, 48syl 17 . . . . . . 7 (𝜑 → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)) = (𝐺‘(𝑀 + 𝐾)))
5041, 45, 493eqtr4d 2654 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)))
5150a1d 25 . . . . 5 (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾))))
5251a1i 11 . . . 4 (𝑀 ∈ ℤ → (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)))))
53 peano2fzr 12225 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
5453adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁))
5554expr 641 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁)))
5655imim1d 80 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)))))
57 oveq1 6556 . . . . . . . . . 10 ((seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))))
58 simprl 790 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (ℤ𝑀))
59 seqp1 12678 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
6058, 59syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
6146adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝐾 ∈ ℤ)
62 eluzadd 11592 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑛 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
6358, 61, 62syl2anc 691 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
64 seqp1 12678 . . . . . . . . . . . . 13 ((𝑛 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)) → (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 𝐾) + 1)) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1))))
6563, 64syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 𝐾) + 1)) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1))))
66 eluzelz 11573 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
6758, 66syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ ℤ)
68 zcn 11259 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
69 zcn 11259 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
70 ax-1cn 9873 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
71 add32 10133 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
7270, 71mp3an2 1404 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
7368, 69, 72syl2an 493 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
7467, 61, 73syl2anc 691 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
7574fveq2d 6107 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 𝐾) + 1)))
76 simprr 792 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁))
7735adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
78 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
79 oveq1 6556 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑛 + 1) → (𝑘 + 𝐾) = ((𝑛 + 1) + 𝐾))
8079fveq2d 6107 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑛 + 1) → (𝐺‘(𝑘 + 𝐾)) = (𝐺‘((𝑛 + 1) + 𝐾)))
8178, 80eqeq12d 2625 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)) ↔ (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾))))
8281rspcv 3278 . . . . . . . . . . . . . . 15 ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾))))
8376, 77, 82sylc 63 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾)))
8474fveq2d 6107 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐺‘((𝑛 + 1) + 𝐾)) = (𝐺‘((𝑛 + 𝐾) + 1)))
8583, 84eqtrd 2644 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 𝐾) + 1)))
8685oveq2d 6565 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1))))
8765, 75, 863eqtr4d 2654 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))))
8860, 87eqeq12d 2625 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)) ↔ ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1)))))
8957, 88syl5ibr 235 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾))))
9089expr 641 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)))))
9190a2d 29 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)))))
9256, 91syld 46 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)))))
9392expcom 450 . . . . 5 (𝑛 ∈ (ℤ𝑀) → (𝜑 → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾))))))
9493a2d 29 . . . 4 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾))))))
9510, 17, 24, 31, 52, 94uzind4 11622 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))))
961, 95mpcom 37 . 2 (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))))
973, 96mpd 15 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  cfv 5804  (class class class)co 6549  cc 9813  1c1 9816   + caddc 9818  cz 11254  cuz 11563  ...cfz 12197  seqcseq 12663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664
This theorem is referenced by:  seqf1olem2  12703  seqshft  13673  isercoll2  14247  fprodser  14518  gsumccat  17201  mulgnndir  17392  mulgnndirOLD  17393
  Copyright terms: Public domain W3C validator