Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdclem1 Structured version   Visualization version   GIF version

Theorem sdclem1 32709
 Description: Lemma for sdc 32710. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
sdc.1 𝑍 = (ℤ𝑀)
sdc.2 (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓𝜒))
sdc.3 (𝑛 = 𝑀 → (𝜓𝜏))
sdc.4 (𝑛 = 𝑘 → (𝜓𝜃))
sdc.5 ((𝑔 = 𝑛 = (𝑘 + 1)) → (𝜓𝜎))
sdc.6 (𝜑𝐴𝑉)
sdc.7 (𝜑𝑀 ∈ ℤ)
sdc.8 (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴𝜏))
sdc.9 ((𝜑𝑘𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴𝜃) → ∃(:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
sdc.10 𝐽 = {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)}
sdc.11 𝐹 = (𝑤𝑍, 𝑥𝐽 ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
Assertion
Ref Expression
sdclem1 (𝜑 → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒))
Distinct variable groups:   𝑓,𝑔,,𝑘,𝑛,𝑤,𝑥,𝐴   ,𝐽,𝑘,𝑤,𝑥   𝑓,𝑀,𝑔,,𝑘,𝑛,𝑤,𝑥   𝜒,𝑔   𝑛,𝐹,𝑤,𝑥   𝜓,𝑓,,𝑘,𝑥   𝜎,𝑓,𝑔,𝑛,𝑥   𝜑,𝑛,𝑤,𝑥   𝜃,𝑛,𝑤,𝑥   ,𝑉   𝜏,,𝑘,𝑛,𝑤,𝑥   𝑓,𝑍,𝑔,,𝑘,𝑛,𝑤,𝑥   𝜑,𝑔,,𝑘
Allowed substitution hints:   𝜑(𝑓)   𝜓(𝑤,𝑔,𝑛)   𝜒(𝑥,𝑤,𝑓,,𝑘,𝑛)   𝜃(𝑓,𝑔,,𝑘)   𝜏(𝑓,𝑔)   𝜎(𝑤,,𝑘)   𝐹(𝑓,𝑔,,𝑘)   𝐽(𝑓,𝑔,𝑛)   𝑉(𝑥,𝑤,𝑓,𝑔,𝑘,𝑛)

Proof of Theorem sdclem1
Dummy variables 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sdc.8 . 2 (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴𝜏))
2 sdc.10 . . . . . 6 𝐽 = {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)}
3 sdc.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
4 fvex 6113 . . . . . . . 8 (ℤ𝑀) ∈ V
53, 4eqeltri 2684 . . . . . . 7 𝑍 ∈ V
6 simpl 472 . . . . . . . . . . 11 ((𝑔:(𝑀...𝑛)⟶𝐴𝜓) → 𝑔:(𝑀...𝑛)⟶𝐴)
7 sdc.6 . . . . . . . . . . . 12 (𝜑𝐴𝑉)
8 ovex 6577 . . . . . . . . . . . 12 (𝑀...𝑛) ∈ V
9 elmapg 7757 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑀...𝑛) ∈ V) → (𝑔 ∈ (𝐴𝑚 (𝑀...𝑛)) ↔ 𝑔:(𝑀...𝑛)⟶𝐴))
107, 8, 9sylancl 693 . . . . . . . . . . 11 (𝜑 → (𝑔 ∈ (𝐴𝑚 (𝑀...𝑛)) ↔ 𝑔:(𝑀...𝑛)⟶𝐴))
116, 10syl5ibr 235 . . . . . . . . . 10 (𝜑 → ((𝑔:(𝑀...𝑛)⟶𝐴𝜓) → 𝑔 ∈ (𝐴𝑚 (𝑀...𝑛))))
1211abssdv 3639 . . . . . . . . 9 (𝜑 → {𝑔 ∣ (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ⊆ (𝐴𝑚 (𝑀...𝑛)))
13 ovex 6577 . . . . . . . . 9 (𝐴𝑚 (𝑀...𝑛)) ∈ V
14 ssexg 4732 . . . . . . . . 9 (({𝑔 ∣ (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ⊆ (𝐴𝑚 (𝑀...𝑛)) ∧ (𝐴𝑚 (𝑀...𝑛)) ∈ V) → {𝑔 ∣ (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ∈ V)
1512, 13, 14sylancl 693 . . . . . . . 8 (𝜑 → {𝑔 ∣ (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ∈ V)
1615ralrimivw 2950 . . . . . . 7 (𝜑 → ∀𝑛𝑍 {𝑔 ∣ (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ∈ V)
17 abrexex2g 7036 . . . . . . 7 ((𝑍 ∈ V ∧ ∀𝑛𝑍 {𝑔 ∣ (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ∈ V) → {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ∈ V)
185, 16, 17sylancr 694 . . . . . 6 (𝜑 → {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ∈ V)
192, 18syl5eqel 2692 . . . . 5 (𝜑𝐽 ∈ V)
2019adantr 480 . . . 4 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → 𝐽 ∈ V)
21 sdc.7 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
2221adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → 𝑀 ∈ ℤ)
23 uzid 11578 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2422, 23syl 17 . . . . . . 7 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → 𝑀 ∈ (ℤ𝑀))
2524, 3syl6eleqr 2699 . . . . . 6 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → 𝑀𝑍)
26 simprl 790 . . . . . . 7 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → 𝑔:{𝑀}⟶𝐴)
27 fzsn 12254 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
2822, 27syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → (𝑀...𝑀) = {𝑀})
2928feq2d 5944 . . . . . . 7 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → (𝑔:(𝑀...𝑀)⟶𝐴𝑔:{𝑀}⟶𝐴))
3026, 29mpbird 246 . . . . . 6 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → 𝑔:(𝑀...𝑀)⟶𝐴)
31 simprr 792 . . . . . 6 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → 𝜏)
32 oveq2 6557 . . . . . . . . 9 (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀))
3332feq2d 5944 . . . . . . . 8 (𝑛 = 𝑀 → (𝑔:(𝑀...𝑛)⟶𝐴𝑔:(𝑀...𝑀)⟶𝐴))
34 sdc.3 . . . . . . . 8 (𝑛 = 𝑀 → (𝜓𝜏))
3533, 34anbi12d 743 . . . . . . 7 (𝑛 = 𝑀 → ((𝑔:(𝑀...𝑛)⟶𝐴𝜓) ↔ (𝑔:(𝑀...𝑀)⟶𝐴𝜏)))
3635rspcev 3282 . . . . . 6 ((𝑀𝑍 ∧ (𝑔:(𝑀...𝑀)⟶𝐴𝜏)) → ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓))
3725, 30, 31, 36syl12anc 1316 . . . . 5 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓))
382abeq2i 2722 . . . . 5 (𝑔𝐽 ↔ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓))
3937, 38sylibr 223 . . . 4 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → 𝑔𝐽)
403peano2uzs 11618 . . . . . . . . . . . . . . . . 17 (𝑘𝑍 → (𝑘 + 1) ∈ 𝑍)
4140ad2antlr 759 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝑍) ∧ (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)) → (𝑘 + 1) ∈ 𝑍)
42 simpr1 1060 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝑍) ∧ (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)) → :(𝑀...(𝑘 + 1))⟶𝐴)
43 simpr3 1062 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝑍) ∧ (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)) → 𝜎)
44 vex 3176 . . . . . . . . . . . . . . . . . . 19 ∈ V
45 ovex 6577 . . . . . . . . . . . . . . . . . . 19 (𝑘 + 1) ∈ V
46 sdc.5 . . . . . . . . . . . . . . . . . . . 20 ((𝑔 = 𝑛 = (𝑘 + 1)) → (𝜓𝜎))
4746a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑔 = 𝑛 = (𝑘 + 1)) → (𝜓𝜎)))
4844, 45, 47sbc2iedv 3473 . . . . . . . . . . . . . . . . . 18 (𝜑 → ([ / 𝑔][(𝑘 + 1) / 𝑛]𝜓𝜎))
4948ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝑍) ∧ (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)) → ([ / 𝑔][(𝑘 + 1) / 𝑛]𝜓𝜎))
5043, 49mpbird 246 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝑍) ∧ (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)) → [ / 𝑔][(𝑘 + 1) / 𝑛]𝜓)
51 nfv 1830 . . . . . . . . . . . . . . . . . 18 𝑛 :(𝑀...(𝑘 + 1))⟶𝐴
52 nfcv 2751 . . . . . . . . . . . . . . . . . . 19 𝑛
53 nfsbc1v 3422 . . . . . . . . . . . . . . . . . . 19 𝑛[(𝑘 + 1) / 𝑛]𝜓
5452, 53nfsbc 3424 . . . . . . . . . . . . . . . . . 18 𝑛[ / 𝑔][(𝑘 + 1) / 𝑛]𝜓
5551, 54nfan 1816 . . . . . . . . . . . . . . . . 17 𝑛(:(𝑀...(𝑘 + 1))⟶𝐴[ / 𝑔][(𝑘 + 1) / 𝑛]𝜓)
56 oveq2 6557 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝑘 + 1) → (𝑀...𝑛) = (𝑀...(𝑘 + 1)))
5756feq2d 5944 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝑘 + 1) → (:(𝑀...𝑛)⟶𝐴:(𝑀...(𝑘 + 1))⟶𝐴))
58 sbceq1a 3413 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝑘 + 1) → (𝜓[(𝑘 + 1) / 𝑛]𝜓))
5958sbcbidv 3457 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝑘 + 1) → ([ / 𝑔]𝜓[ / 𝑔][(𝑘 + 1) / 𝑛]𝜓))
6057, 59anbi12d 743 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → ((:(𝑀...𝑛)⟶𝐴[ / 𝑔]𝜓) ↔ (:(𝑀...(𝑘 + 1))⟶𝐴[ / 𝑔][(𝑘 + 1) / 𝑛]𝜓)))
6155, 60rspce 3277 . . . . . . . . . . . . . . . 16 (((𝑘 + 1) ∈ 𝑍 ∧ (:(𝑀...(𝑘 + 1))⟶𝐴[ / 𝑔][(𝑘 + 1) / 𝑛]𝜓)) → ∃𝑛𝑍 (:(𝑀...𝑛)⟶𝐴[ / 𝑔]𝜓))
6241, 42, 50, 61syl12anc 1316 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑍) ∧ (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)) → ∃𝑛𝑍 (:(𝑀...𝑛)⟶𝐴[ / 𝑔]𝜓))
632eleq2i 2680 . . . . . . . . . . . . . . . 16 (𝐽 ∈ {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)})
64 nfcv 2751 . . . . . . . . . . . . . . . . . 18 𝑔𝑍
65 nfv 1830 . . . . . . . . . . . . . . . . . . 19 𝑔 :(𝑀...𝑛)⟶𝐴
66 nfsbc1v 3422 . . . . . . . . . . . . . . . . . . 19 𝑔[ / 𝑔]𝜓
6765, 66nfan 1816 . . . . . . . . . . . . . . . . . 18 𝑔(:(𝑀...𝑛)⟶𝐴[ / 𝑔]𝜓)
6864, 67nfrex 2990 . . . . . . . . . . . . . . . . 17 𝑔𝑛𝑍 (:(𝑀...𝑛)⟶𝐴[ / 𝑔]𝜓)
69 feq1 5939 . . . . . . . . . . . . . . . . . . 19 (𝑔 = → (𝑔:(𝑀...𝑛)⟶𝐴:(𝑀...𝑛)⟶𝐴))
70 sbceq1a 3413 . . . . . . . . . . . . . . . . . . 19 (𝑔 = → (𝜓[ / 𝑔]𝜓))
7169, 70anbi12d 743 . . . . . . . . . . . . . . . . . 18 (𝑔 = → ((𝑔:(𝑀...𝑛)⟶𝐴𝜓) ↔ (:(𝑀...𝑛)⟶𝐴[ / 𝑔]𝜓)))
7271rexbidv 3034 . . . . . . . . . . . . . . . . 17 (𝑔 = → (∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓) ↔ ∃𝑛𝑍 (:(𝑀...𝑛)⟶𝐴[ / 𝑔]𝜓)))
7368, 44, 72elabf 3318 . . . . . . . . . . . . . . . 16 ( ∈ {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ↔ ∃𝑛𝑍 (:(𝑀...𝑛)⟶𝐴[ / 𝑔]𝜓))
7463, 73bitri 263 . . . . . . . . . . . . . . 15 (𝐽 ↔ ∃𝑛𝑍 (:(𝑀...𝑛)⟶𝐴[ / 𝑔]𝜓))
7562, 74sylibr 223 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)) → 𝐽)
7675ex 449 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → ((:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎) → 𝐽))
7776rexlimdva 3013 . . . . . . . . . . . 12 (𝜑 → (∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎) → 𝐽))
7877abssdv 3639 . . . . . . . . . . 11 (𝜑 → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ⊆ 𝐽)
7978ad2antrr 758 . . . . . . . . . 10 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ 𝑥𝐽) → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ⊆ 𝐽)
8019ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ 𝑥𝐽) → 𝐽 ∈ V)
81 elpw2g 4754 . . . . . . . . . . 11 (𝐽 ∈ V → ({ ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ 𝒫 𝐽 ↔ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ⊆ 𝐽))
8280, 81syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ 𝑥𝐽) → ({ ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ 𝒫 𝐽 ↔ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ⊆ 𝐽))
8379, 82mpbird 246 . . . . . . . . 9 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ 𝑥𝐽) → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ 𝒫 𝐽)
84 oveq2 6557 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝑀...𝑛) = (𝑀...𝑘))
8584feq2d 5944 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → (𝑔:(𝑀...𝑛)⟶𝐴𝑔:(𝑀...𝑘)⟶𝐴))
86 sdc.4 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → (𝜓𝜃))
8785, 86anbi12d 743 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → ((𝑔:(𝑀...𝑛)⟶𝐴𝜓) ↔ (𝑔:(𝑀...𝑘)⟶𝐴𝜃)))
8887cbvrexv 3148 . . . . . . . . . . . . . . . 16 (∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓) ↔ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃))
89 sdc.9 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴𝜃) → ∃(:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
9089reximdva 3000 . . . . . . . . . . . . . . . . 17 (𝜑 → (∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃) → ∃𝑘𝑍(:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
91 rexcom4 3198 . . . . . . . . . . . . . . . . 17 (∃𝑘𝑍(:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎))
9290, 91syl6ib 240 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃) → ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
9388, 92syl5bi 231 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓) → ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
9493ss2abdv 3638 . . . . . . . . . . . . . 14 (𝜑 → {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ⊆ {𝑔 ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
952, 94syl5eqss 3612 . . . . . . . . . . . . 13 (𝜑𝐽 ⊆ {𝑔 ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
9695sselda 3568 . . . . . . . . . . . 12 ((𝜑𝑥𝐽) → 𝑥 ∈ {𝑔 ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
97 vex 3176 . . . . . . . . . . . . 13 𝑥 ∈ V
98 eqeq1 2614 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑥 → (𝑔 = ( ↾ (𝑀...𝑘)) ↔ 𝑥 = ( ↾ (𝑀...𝑘))))
99983anbi2d 1396 . . . . . . . . . . . . . . 15 (𝑔 = 𝑥 → ((:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
10099rexbidv 3034 . . . . . . . . . . . . . 14 (𝑔 = 𝑥 → (∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
101100exbidv 1837 . . . . . . . . . . . . 13 (𝑔 = 𝑥 → (∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
10297, 101elab 3319 . . . . . . . . . . . 12 (𝑥 ∈ {𝑔 ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ↔ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎))
10396, 102sylib 207 . . . . . . . . . . 11 ((𝜑𝑥𝐽) → ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎))
104 abn0 3908 . . . . . . . . . . 11 ({ ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ≠ ∅ ↔ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎))
105103, 104sylibr 223 . . . . . . . . . 10 ((𝜑𝑥𝐽) → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ≠ ∅)
106105adantlr 747 . . . . . . . . 9 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ 𝑥𝐽) → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ≠ ∅)
107 eldifsn 4260 . . . . . . . . 9 ({ ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ (𝒫 𝐽 ∖ {∅}) ↔ ({ ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ 𝒫 𝐽 ∧ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ≠ ∅))
10883, 106, 107sylanbrc 695 . . . . . . . 8 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ 𝑥𝐽) → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ (𝒫 𝐽 ∖ {∅}))
109108adantrl 748 . . . . . . 7 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑤𝑍𝑥𝐽)) → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ (𝒫 𝐽 ∖ {∅}))
110109ralrimivva 2954 . . . . . 6 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → ∀𝑤𝑍𝑥𝐽 { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ (𝒫 𝐽 ∖ {∅}))
111 sdc.11 . . . . . . 7 𝐹 = (𝑤𝑍, 𝑥𝐽 ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
112111fmpt2 7126 . . . . . 6 (∀𝑤𝑍𝑥𝐽 { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ (𝒫 𝐽 ∖ {∅}) ↔ 𝐹:(𝑍 × 𝐽)⟶(𝒫 𝐽 ∖ {∅}))
113110, 112sylib 207 . . . . 5 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → 𝐹:(𝑍 × 𝐽)⟶(𝒫 𝐽 ∖ {∅}))
11421iftrued 4044 . . . . . . . . . 10 (𝜑 → if(𝑀 ∈ ℤ, 𝑀, 0) = 𝑀)
115114fveq2d 6107 . . . . . . . . 9 (𝜑 → (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) = (ℤ𝑀))
116115, 3syl6eqr 2662 . . . . . . . 8 (𝜑 → (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) = 𝑍)
117116xpeq1d 5062 . . . . . . 7 (𝜑 → ((ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) × 𝐽) = (𝑍 × 𝐽))
118117feq2d 5944 . . . . . 6 (𝜑 → (𝐹:((ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) × 𝐽)⟶(𝒫 𝐽 ∖ {∅}) ↔ 𝐹:(𝑍 × 𝐽)⟶(𝒫 𝐽 ∖ {∅})))
119118biimpar 501 . . . . 5 ((𝜑𝐹:(𝑍 × 𝐽)⟶(𝒫 𝐽 ∖ {∅})) → 𝐹:((ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) × 𝐽)⟶(𝒫 𝐽 ∖ {∅}))
120113, 119syldan 486 . . . 4 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → 𝐹:((ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) × 𝐽)⟶(𝒫 𝐽 ∖ {∅}))
121 0z 11265 . . . . . 6 0 ∈ ℤ
122121elimel 4100 . . . . 5 if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ
123 eqid 2610 . . . . 5 (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) = (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))
124122, 123axdc4uz 12645 . . . 4 ((𝐽 ∈ V ∧ 𝑔𝐽𝐹:((ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) × 𝐽)⟶(𝒫 𝐽 ∖ {∅})) → ∃𝑗(𝑗:(ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))⟶𝐽 ∧ (𝑗‘if(𝑀 ∈ ℤ, 𝑀, 0)) = 𝑔 ∧ ∀𝑚 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))(𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚))))
12520, 39, 120, 124syl3anc 1318 . . 3 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → ∃𝑗(𝑗:(ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))⟶𝐽 ∧ (𝑗‘if(𝑀 ∈ ℤ, 𝑀, 0)) = 𝑔 ∧ ∀𝑚 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))(𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚))))
12622iftrued 4044 . . . . . . . . . 10 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → if(𝑀 ∈ ℤ, 𝑀, 0) = 𝑀)
127126fveq2d 6107 . . . . . . . . 9 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) = (ℤ𝑀))
128127, 3syl6eqr 2662 . . . . . . . 8 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) = 𝑍)
129128feq2d 5944 . . . . . . 7 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → (𝑗:(ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))⟶𝐽𝑗:𝑍𝐽))
13088abbii 2726 . . . . . . . . 9 {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} = {𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)}
1312, 130eqtri 2632 . . . . . . . 8 𝐽 = {𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)}
132 feq3 5941 . . . . . . . 8 (𝐽 = {𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} → (𝑗:𝑍𝐽𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)}))
133131, 132ax-mp 5 . . . . . . 7 (𝑗:𝑍𝐽𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)})
134129, 133syl6bb 275 . . . . . 6 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → (𝑗:(ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))⟶𝐽𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)}))
135126fveq2d 6107 . . . . . . 7 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → (𝑗‘if(𝑀 ∈ ℤ, 𝑀, 0)) = (𝑗𝑀))
136135eqeq1d 2612 . . . . . 6 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → ((𝑗‘if(𝑀 ∈ ℤ, 𝑀, 0)) = 𝑔 ↔ (𝑗𝑀) = 𝑔))
137128raleqdv 3121 . . . . . 6 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → (∀𝑚 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))(𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)) ↔ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚))))
138134, 136, 1373anbi123d 1391 . . . . 5 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → ((𝑗:(ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))⟶𝐽 ∧ (𝑗‘if(𝑀 ∈ ℤ, 𝑀, 0)) = 𝑔 ∧ ∀𝑚 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))(𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚))) ↔ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))))
139 sdc.2 . . . . . . 7 (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓𝜒))
1407ad2antrr 758 . . . . . . 7 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → 𝐴𝑉)
14121ad2antrr 758 . . . . . . 7 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → 𝑀 ∈ ℤ)
1421ad2antrr 758 . . . . . . 7 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → ∃𝑔(𝑔:{𝑀}⟶𝐴𝜏))
143 simpll 786 . . . . . . . 8 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → 𝜑)
144143, 89sylan 487 . . . . . . 7 ((((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) ∧ 𝑘𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴𝜃) → ∃(:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
145 nfv 1830 . . . . . . . 8 𝑘(𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏))
146 nfcv 2751 . . . . . . . . . 10 𝑘𝑗
147 nfcv 2751 . . . . . . . . . 10 𝑘𝑍
148 nfre1 2988 . . . . . . . . . . 11 𝑘𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)
149148nfab 2755 . . . . . . . . . 10 𝑘{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)}
150146, 147, 149nff 5954 . . . . . . . . 9 𝑘 𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)}
151 nfv 1830 . . . . . . . . 9 𝑘(𝑗𝑀) = 𝑔
152 nfcv 2751 . . . . . . . . . . . 12 𝑘𝑚
153131, 149nfcxfr 2749 . . . . . . . . . . . . . 14 𝑘𝐽
154 nfre1 2988 . . . . . . . . . . . . . . 15 𝑘𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)
155154nfab 2755 . . . . . . . . . . . . . 14 𝑘{ ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)}
156147, 153, 155nfmpt2 6622 . . . . . . . . . . . . 13 𝑘(𝑤𝑍, 𝑥𝐽 ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
157111, 156nfcxfr 2749 . . . . . . . . . . . 12 𝑘𝐹
158 nfcv 2751 . . . . . . . . . . . 12 𝑘(𝑗𝑚)
159152, 157, 158nfov 6575 . . . . . . . . . . 11 𝑘(𝑚𝐹(𝑗𝑚))
160159nfel2 2767 . . . . . . . . . 10 𝑘(𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚))
161147, 160nfral 2929 . . . . . . . . 9 𝑘𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚))
162150, 151, 161nf3an 1819 . . . . . . . 8 𝑘(𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))
163145, 162nfan 1816 . . . . . . 7 𝑘((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚))))
164 simpr1 1060 . . . . . . . 8 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → 𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)})
165164, 133sylibr 223 . . . . . . 7 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → 𝑗:𝑍𝐽)
16626adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → 𝑔:{𝑀}⟶𝐴)
167 simpr2 1061 . . . . . . . . 9 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → (𝑗𝑀) = 𝑔)
168141, 27syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → (𝑀...𝑀) = {𝑀})
169167, 168feq12d 5946 . . . . . . . 8 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → ((𝑗𝑀):(𝑀...𝑀)⟶𝐴𝑔:{𝑀}⟶𝐴))
170166, 169mpbird 246 . . . . . . 7 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → (𝑗𝑀):(𝑀...𝑀)⟶𝐴)
171 simpr3 1062 . . . . . . . 8 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))
172 oveq1 6556 . . . . . . . . . . 11 (𝑚 = 𝑤 → (𝑚 + 1) = (𝑤 + 1))
173172fveq2d 6107 . . . . . . . . . 10 (𝑚 = 𝑤 → (𝑗‘(𝑚 + 1)) = (𝑗‘(𝑤 + 1)))
174 id 22 . . . . . . . . . . 11 (𝑚 = 𝑤𝑚 = 𝑤)
175 fveq2 6103 . . . . . . . . . . 11 (𝑚 = 𝑤 → (𝑗𝑚) = (𝑗𝑤))
176174, 175oveq12d 6567 . . . . . . . . . 10 (𝑚 = 𝑤 → (𝑚𝐹(𝑗𝑚)) = (𝑤𝐹(𝑗𝑤)))
177173, 176eleq12d 2682 . . . . . . . . 9 (𝑚 = 𝑤 → ((𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)) ↔ (𝑗‘(𝑤 + 1)) ∈ (𝑤𝐹(𝑗𝑤))))
178177rspccva 3281 . . . . . . . 8 ((∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)) ∧ 𝑤𝑍) → (𝑗‘(𝑤 + 1)) ∈ (𝑤𝐹(𝑗𝑤)))
179171, 178sylan 487 . . . . . . 7 ((((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) ∧ 𝑤𝑍) → (𝑗‘(𝑤 + 1)) ∈ (𝑤𝐹(𝑗𝑤)))
1803, 139, 34, 86, 46, 140, 141, 142, 144, 2, 111, 163, 165, 170, 179sdclem2 32708 . . . . . 6 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒))
181180ex 449 . . . . 5 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → ((𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚))) → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒)))
182138, 181sylbid 229 . . . 4 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → ((𝑗:(ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))⟶𝐽 ∧ (𝑗‘if(𝑀 ∈ ℤ, 𝑀, 0)) = 𝑔 ∧ ∀𝑚 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))(𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚))) → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒)))
183182exlimdv 1848 . . 3 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → (∃𝑗(𝑗:(ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))⟶𝐽 ∧ (𝑗‘if(𝑀 ∈ ℤ, 𝑀, 0)) = 𝑔 ∧ ∀𝑚 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))(𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚))) → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒)))
184125, 183mpd 15 . 2 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒))
1851, 184exlimddv 1850 1 (𝜑 → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475  ∃wex 1695   ∈ wcel 1977  {cab 2596   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  Vcvv 3173  [wsbc 3402   ∖ cdif 3537   ⊆ wss 3540  ∅c0 3874  ifcif 4036  𝒫 cpw 4108  {csn 4125   × cxp 5036   ↾ cres 5040  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551   ↑𝑚 cmap 7744  0cc0 9815  1c1 9816   + caddc 9818  ℤcz 11254  ℤ≥cuz 11563  ...cfz 12197 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-dc 9151  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198 This theorem is referenced by:  sdc  32710
 Copyright terms: Public domain W3C validator